
EMC® Documentum®

XDS Registry
Version 1.7

Installation Guide

EMC Corporation
Corporate Headquarters

Hopkinton, MA 01748-9103
1-508-435-1000
www.EMC.com

Legal Notice

Copyright © 2010-2015 EMC Corporation. All Rights Reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change
without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATIONMAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KINDWITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. Adobe and Adobe PDF
Library are trademarks or registered trademarks of Adobe Systems Inc. in the U.S. and other countries. All other trademarks
used herein are the property of their respective owners.

Documentation Feedback

Your opinion matters. We want to hear from you regarding our product documentation. If you have feedback about how we can
make our documentation better or easier to use, please send us your feedback directly at IIGDocumentationFeedback@emc.com

Table of Contents

Revision History .. 7

Chapter 1 About XDS Registry Server ... 9
Overview ... 9
Components... 9
Architecture ... 10
Workflow... 10
Endpoints .. 14

Chapter 2 Features .. 17
ITI-8 Patient Identity Notifications ... 17
New Patient Identity Notification .. 18
Merge Patient Identities Notification.. 18

XDS Registry Transactions .. 20
Customization.. 21
Security ... 21
Business Continuance ... 21
Load Balancing and Scalability .. 21
Data Backup and Recovery.. 22
High Availability and Disaster Recovery .. 22

Usage Reporting... 22

Chapter 3 Security Configuration .. 25
Access Control Settings ... 25
Authentication Configuration.. 25
Trusted Node Authentication .. 25
User Authentication.. 26

Trusted Host Access Configuration .. 26
Patient Privacy Policy Enforcement.. 27

Communication Security Settings .. 29
Port Usage ... 29
Network Encryption ... 29

Data Security Settings ... 30
Encryption of Data at Rest... 30

Secure Deployment Settings .. 30

Chapter 4 Before You Install .. 31

Chapter 5 Installation ... 33
Pre-Installation Tasks .. 33
Installing Documentum xDB Healthcare Database .. 34
Installing Third-party Library Dependencies .. 34

3

Table of Contents

Obtaining the Library Dependencies.. 35
Installing the Library Dependencies... 37

Creating the HIP Configuration Directory .. 37
Deploying the Property Files in the HIP Configuration Directory......................... 38
Deploying the HIP Registry WAR File on Windows .. 39
Deploying the HIP Registry WAR File Using Tomcat 39
Deploying the HIP Registry WAR File Using WebLogic................................... 39

Deploying the HIP Registry WAR File in Linux .. 40
Enabling Remote xDB Instance Support ... 41

Chapter 6 Post-Installation Configuration ... 43
Configuring Registry Properties File .. 43
Configuring the Registry Property ... 44
Configuring the Documentum xDB Properties.. 44
Configuring the HADR Properties ... 45

Configuring the Registry Configuration File Properties 52
Configuring the MLLP Parameters... 53
Configuring the Custom SOAP Routes Properties... 54
Configuring the Request and Response Validator Properties............................ 55
Configuring the IHE Endpoint for Trusted Hosts .. 56
Configuring the HTTPS Properties... 56
Configuring the ATNA Properties ... 58
Configuring the XUA Related Properties.. 59
Configuring the PPIC Properties.. 60
Configuring the Usage Report Properties ... 60

Securing the Registry Properties File.. 61
Configuring the Registry Configuration XML File... 61
Configuring the HIP PPIC Mapping Properties File .. 63
Configuring the Web Container Heap Memory... 65
Configuring SSL for Tomcat .. 65
Configuring SSL for WebLogic .. 66
Configuring the XUA Properties.. 66
Configuring the XUA Policy .. 67
Configuring the XUA SAML Attribute Values .. 67
Configuring the XUA Attribute Validation Property 68
Configuring the Trusted Assertion Provider Properties 69

Chapter 7 Verifying the Installation .. 71
Verifying the Installation Using Tomcat.. 71
Verifying the Installation Using WebLogic.. 72

Chapter 8 Upgrade ... 73
Upgrading XDS Registry from 1.6B250714_update to 1.7 73

Chapter 9 Troubleshooting .. 75
Log Settings ... 75
Log Description.. 75
Log Management and Retrieval ... 75

Issues and Resolutions .. 76
Context Initialization Failing when Deploying the Server WAR Files................ 76

Problem ... 76
Problem ... 77

4

Table of Contents

Cause .. 77
Resolution.. 77

Cannot Connect to the XDS Registry Server.. 77
Problem ... 77
Cause .. 77
Resolution.. 78

Cannot Access the xDB Server ... 78
Problem ... 78
Cause .. 78
Resolution.. 78

Java Errors at Startup .. 79
Problem ... 79
Cause .. 79
Resolution.. 79

XUA Policy File Error ... 79
Problem ... 79
Cause .. 79
Resolution.. 79

servicesstore.jks File Not Found Error .. 80
Problem ... 80
Cause .. 80
Resolution.. 80

Must Understand Headers Error.. 80
Problem ... 80
Cause .. 81
Resolution.. 81

java.lang.OutOfMemoryError: PermGen space error....................................... 81
Problem ... 81
Cause .. 81
Resolution.. 81

Required Header Not Present Error ... 82
Problem ... 82
Cause .. 82
Resolution.. 82

Unable to Connect to Documentum xDB .. 82
Problem ... 82
Cause .. 83
Resolution.. 83

o.s.web.context.ContextLoader - Context Initialization Failed 83
Problem ... 83
Cause .. 84
Resolution.. 84

CannotLoadBeanClassException: Error loading class...................................... 84
Problem ... 84
Cause .. 85
Resolution.. 85

Apache Camel Shutting Down .. 85
Problem ... 85
Cause .. 86
Resolution.. 86

Appendix A Sample Configuration Files ... 87
registry.properties .. 87
registry-config.xml ... 92
hip-ppic-mapping.properties... 93

5

Table of Contents

6

Revision History

Revision Date Description

March 2015 Initial publication.

7

Preface

8

Chapter 1
About XDS Registry Server

This chapter contains the following topics:
• Overview, page 9

• Components, page 9

• Architecture, page 10

• Workflow, page 10

• Endpoints, page 14

Overview
The Cross-enterprise Document Sharing (XDS) Registry Server provides a central directory for a
healthcare community that contains information about patient healthcare records. The registry does
not store the records themselves, but instead contains information about each record, such as the
patient ID, the document type, the physician name, the procedure involved, and the location of the
record. Healthcare providers query the registry to obtain a list of patient healthcare records and
their locations.

Components
HIP XDS Registry consists of the following components:
• HIP XDS Registry Server

• xDB

9

About XDS Registry Server

Architecture
XDS Registry Server is a J2EE web application built on the Apache Camel open-source routing
and mediation framework. It queries and retrieves XML metadata from the Documentum xDB
healthcare database.

The Documentum xDB healthcare database stores registry data in the /registry/objects library,
and the XDS Registry Server configuration file in the /registry library. The server environment
properties for the XDS Registry Server are stored in registry.properties file, which resides on
the server in the HIP configuration directory.

The following figure shows the XDS Registry Server architecture:

The top layer contains XDS Registry Request processors that handle and process the Registry SOAP
request messages. These processors handle messages for registering patient records and for retrieving
the patient record metadata from the XDB database.

The second layer contains healthcare components from the Open eHealth Integration Platform (IPF).
These are Apache Camel specific components for the XDS Registry that include request validators,
SOAP components, and message convertors.

The third layer contains the general application framework which includes Apache Camel, Apache
CXF and Spring. Apache CXF is an Apache Camel component that handles message requests formats
from a wide variety of formats. This layer also uses the Spring ApplicationContext to provide
configuration properties to the application.

The fourth layer consists of the Documentum xDB healthcare database on a Documentum xDB server.

Workflow
XDS Registry Server is a component of the HIP XDS Archive. It can be paired with the HIP XDS
Repository Server or any Integrating the Healthcare Enterprise (IHE)-enabled XDS Repository. The

10

About XDS Registry Server

registry implements the IHE XDS.b Profile registry actor which enables you to share healthcare
records with the hospitals and organizations that comprise your healthcare community.

A healthcare community consists of different healthcare consumers and providers that need to access
and share a patient’s Healthcare records. Healthcare records include administrative records (patient
information) and patient medical records (X-rays, doctor reports, lab results).

There are many potential consumers and providers in a healthcare community, some common
examples are: hospitals, physician’s offices, labs, pharmacies, insurance companies, and Picture
Archiving and Communications Systems (PACS).

The following figure shows a few examples of consumers and providers in a healthcare community:

Healthcare providers create patient identities and supply that information to the registry through
Patient Identity Feed transactions.

The following figure shows the Patient Identity Feed transactions:

11

About XDS Registry Server

Healthcare providers submit new Healthcare records to an XDS Repository through the XDS
Repository Server with the Provide and Register Document Set transaction. The XDS Repository
Server stores the submitted Healthcare records in the XDS Repository.

The following figure shows the Provide and Register Document Set transaction:

The XDS Repository Server then automatically registers the relevant document metadata with the
XDS Registry with the Register Document Set transaction. Registering a healthcare record with the
XDS Registry enables other healthcare providers to find the record.

The following figure shows the registration of document metadata.

12

About XDS Registry Server

When healthcare providers need to obtain a patient’s healthcare records, they query the registry
with the Registry Stored Query request. The registry provides the location of the healthcare record.
Healthcare providers operate as a Document Consumer when querying the XDS Registry.

The following figure shows the process of querying the registry:

Document Consumers can then retrieve the content from the Repository using the Retrieve Document
Set transaction.

The following figure shows the Retrieve Document Set transaction:

13

About XDS Registry Server

Endpoints
The following table lists the endpoints for XDS Registry Server:

IHE Transaction Description Endpoint

ITI-8 Patient Identity Feed HL7 v2.3.1 MLLP://<host>:<port>

ITI-18 Registry Stored Query

Registry Stored
Query—Asynchronous

Registry Stored Query—Trusted
host access-only

HTTPS://<host>:<port>/registry/services/xds
-iti18

HTTPS://<host>:<port>/registry/services/xds
-iti18as

HTTPS://<host>:<port>/registry/services
/trustedhosts/xds-iti18

ITI-42 Register Document

Register Document —
Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti42

HTTP://<host>:<port>/registry/services/xds
-iti42as

ITI-44 Patient Identity Feed HL7 v3 HTTPS://<host>:<port>/registry/services/xds
-iti44

ITI-51 Multi-Patient Registry Stored
Query

Multi-Patient Registry Stored
Query — Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti51

HTTPS://<host>:<port>/registry/services/xds
-iti51as

ITI-61 Register On-Demand Document

Register On-Demand
Document— Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti61

HTTP://<host>:<port>/registry/services/xds
-iti61as

14

About XDS Registry Server

IHE Transaction Description Endpoint

ITI-57 Update Document

Update Document—
Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti57

HTTPS://<host>:<port>/registry/services/xds
-iti57as

ITI-62 Delete Document

Delete Document—
Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti62

HTTPS://<host>:<port>/registry/services/xds
-iti62as

15

About XDS Registry Server

16

Chapter 2
Features

This chapter contains the following topics:
• ITI-8 Patient Identity Notifications, page 17

• XDS Registry Transactions, page 20

• Customization, page 21

• Security, page 21

• Business Continuance, page 21

• Usage Reporting, page 22

ITI-8 Patient Identity Notifications
ITI-8 Patient Identity Feed is the transaction in which a Patient Identity Source sends a message
to the Patient Identity Cross Reference Manager and Document Registry whenever a patient is
admitted, pre-admitted, registered, or when the patient demographic data is modified.

The Patient Identity Feed transactions are done by the HL7 ADT messages.

The following are the HL7 Versions supported for inbound ADT messages:
ADT^A34(V23),ADT^A40(V231,V24,V25,V251)

For inbound messages, XDS Registry supports only the Merge Patient Identity notification (ADT^A40)
and simple MDM messages for new document notifications.

The Registry Server listens to the ITI-8 Patient Identity feeds through two Minimal Lower Layer
Protocol (MLLP) ports, one secure and the other, non-secure. The HTTPS properties must be set if
you want to enable secure HTTPS MLLP port.

You must edit the registry.properties file to configure these ports.

17

Features

New Patient Identity Notification

The following are the New Patient Identity Notifications that a Patient Identity Source triggers
whenever an Admit/Register or an Update event occurs:
• A01: Admission of an inpatient into a facility

• A04: Registration of an outpatient for a visit of the facility

• A05: Pre-admission of an inpatient (that is, registration of patient information ahead of actual
admission)

• A08: Update to an existing patient record

Merge Patient Identities Notification

The Patient Identity Source generates theMerge Patient–Internal ID notification denoted by
(ADT^A40) whenever two patient records are merged. Two records are merged when they reference
the same patient in the Patient Identifier Domain. The Patient Identity Source sends the generated
Merge Patient - Internal (A40) message to Patient Identifier Cross-reference Manager and Document
Registry.

Message Segments:

An ADT Patient Merge (ADT^A40) message consists of the following segments:
• MSH—Message Header

• EVN—Event Type

• PID—Patient Identity Information

• MRG—Merge Patient Information

• PV1 (optional)—Patient Visit Information

For Patient Identity Merge, the main segments, fields, and components that are of interest are the
following:

PID: Patient Information

PID-3: Patient Identifier List–Internal

PID-3.1: Patient Identifier Value

MRG: Merge Patient Information

MRG-1: Prior Patient Identifier List–Internal

MRG-1.1: Prior Patient Identifier Value

The Merge segment (MRG) contains information about the duplicate (secondary) patient identifier
that needs to be dereferenced. MRG-1 indicates the subsumed patient identifier; the patient identifier
whose use is being ended. The PID-3 indicates the surviving patient identifier; the patient identifier
whose use continues.

18

Features

Merging Process:

The Patient Identity Source merges the secondary patient identifier with the primary patient
identifier, by populating the values of the following components of PID segment:
• PID-3.1: Patient Identifier Value

• PID-3.4: Assigning Authority

in the corresponding components of the MRG segment:
• MRG-1.1: Prior Patient Identifier Value

• MRG-1.4: Assigning Authority

That is, the same value of Patient Identifier component of PID-3.1 field is populated in the Prior
Patient Identifier Value component of MRG-1.1 field. Similarly, the assigning authority of PID-3.4
component is populated in the assigning authority of the MRG-1.1 component.

After a merge, the patient identifier PID-3 represents all records formerly represented by eitherMRG-1
or PID-3. All other fields may be ignored. The secondary patient identifier should no longer be used
to reference the patient. However, HL7 does not mandate that the secondary identifier be deleted.

After merging, the Patient Identity source sends an ADT^A40Merge Patient message to the following:
• Patient Identifier Cross-reference Manager

• Document Registry

Action taken by Patient Identifier Cross-reference Manager post merging: When the Patient
Identifier Cross-reference Manager receives the ADT^A40message type, it replaces all references to
the patient ID that was earlier existing in MRG-1.1 field with the patient ID in the PID-3.1 field. After
the references are updated, the newly updated identifiers are made available to the PIX queries
and the Patient Identifier Cross-reference Manager sends out a notification to the Patient Identifier
Cross-reference Consumers using the PIX Update Notification transaction (ITI-46).

Action taken by the Document Registry post merging: When the Document Registry receives the
ADT^A40message type, it merges the secondary patient identity (MRG-1.1) into the primary patient
identity (PID-3.1) in the registry.

After merging,
• All document submission sets including the documents and folders beneath them associated with
the secondary patient identity before merge points to the primary patient identity.

• The secondary patient identity is no longer referenced by the Registry for any future transactions.

• Any Register Document Set-b transaction referencing a subsumed identifier is rejected with an
XdsUnknownPatientId error.

• Any Registry Stored Query transaction referencing a subsumed identifier returns no content.

• Registry Stored Query transactions referencing a surviving identifier successfully match the entire
recorded merge chain and return appropriate metadata.

Note: The Document Registry performs merge only if ADT^A40message does not meet any of the
following conditions:
• The subsumed patient identifier is not issued by the correct Assigning Authority according to
the Affinity Domain configuration.

• The surviving patient identifier is not issued by the correct Assigning Authority according to
the Affinity Domain configuration.

19

Features

• The subsumed and surviving patient identifiers are the same.

• The subsumed patient identifier was subsumed by an earlier message.

• The surviving patient identifier was subsumed by and earlier message.

• Both the subsumed and surviving patient identifier must convey a currently active patient
identifier known to the Registry Actor.

The changes resulting due to an A40 merge are irreversible.

XDS Registry Transactions
XDS Registry supports the following transactions:
• ITI-18 Registry Stored Query: Transaction 18 is used by the Document Registry and Document
Consumer actors.

The Document Consumer requests a query by identifier (UUID), and passes parameters to the
query. A parameter controlling the format of the returned data is passed; it selects either object
references or full objects. The Document Registry services the query using its stored definitions of
the queries defined for XDS.

• ITI-42 Register Document Set: Transaction [ITI-42] is used by the Document Repository Actor to
register a set of documents with the Document Registry in XDS.b.

The Document Repository submits document metadata to a Document Registry. The Document
Registry receives and stores document metadata.

• ITI-51 Multi-Patient Query: Transaction ITI-51 is used by the Document Consumer and
Document Registry actors.

The Document Consume issues a Multi-Patient Stored Query to retrieve metadata based on criteria
common to multiple patients. The Document Registry responds to aMulti-Patient Stored Query by
providing the metadata or object references of registry objects which satisfy the query parameters.

• ITI-57 Update Document Set: Transaction 57 is used by the Document Administrator, Document
Registry and Document Recipient actors.

The Document Administrator Actor issues a collection of metadata updates to the Document
Registry or Document Recipient Actor. The Document Registry or Document Recipient Actor
accepts metadata updates.

• ITI-61 Register On-Demand Document Entry: Transaction 61 is used by the On-Demand
Document Source and Document Registry actors.

An On-Demand Document Source passes a Submission Request to a Document Registry Actor.
The Submission Request contains metadata describing one or more On-Demand Document
Entries. The Document Registry receives and stores metadata about available on-demand
documents.

• ITI-62 Delete Document Set: Transaction 62 is used by the Document Administrator, Document
Recipient and Document Registry actors. The Delete Document Set transaction deletes arbitrary
metadata objects from a Document Registry or Document Recipient based on a list of entryUUID
attribute describing the objects.

20

Features

The Document Administrator issues metadata delete requests to Document Registry. The
Document Registry or Document Recipient accepts metadata delete requests.

Customization
The only customization available for the XDS Registry Server is the ability to override the
Camel SoapRouteBuilder script. This script allows you to add custom route endpoints to filter
or validate incoming requests and outgoing responses. You can do this configuration in the
registry.properties file.

Security
HIP Registry provides the following security features:
• TLS or Trusted Node Authentication

• Patient Privacy Policy enforcement

• User Authentication through XUA

• Auditing

Chapter 3, Security Configuration provides more information about the security features.

Business Continuance
The following information on business continuance is applicable only for XDS Registry Server and
not for xDB.

xDB documentation provides more details about business continuance for xDB.

The whitepaper High Availability Configuration For a Multiple Region EMC Healthcare Integration
Portfolio (HIP) Registry and Repository provides more details on HADR.

Load Balancing and Scalability

The following are the two methods for load balancing and scaling the environment:
• Instantiate multiple instances of the XDS Registry Server and use a Load Balancer to route
incoming requests to the XDS Registry cluster.

In the event of a failure, the Load Balancer routes requests to available XDS Registry Servers to
ensure the system remains available.

• Load balance the xDB Server for performance and scalability. The xDB documentation provides
more information on load balancing.

21

Features

Data Backup and Recovery

XDS Registry Server maintains only initial XDS Registry application-specific configuration
information. This information resides in the registry configuration file (registry-config.xml)
and the server configuration properties files (registry.properties). These files are part of the
XDS Registry Server and are either backed up with the entire server installation on a VM image or
through a different method. There is no Recovery Point Objective for the XDS Registry Server because
the server does not store transaction information or Repository content. The Documentum xDB
Server stores XDS document metadata and should be backed up separately.

High Availability and Disaster Recovery

The High Availability Disaster Recovery (HADR) is achieved by implementing a backup strategy for
each XDS server in your environment, including the xDB Server.

For example:
• Spare Instance: Create spare instances of the XDS server that you can manually start when
an active XDS server fails. You can create a spare instance through VM images, ESXI servers,
or other similar methods.

• Active-Passive: Configure a Universal Fail-Over Server (UFO) that is active and able to take over
the functionality of the failing server.

• Active-Active: Configure multiple XDS Registry Servers to serve a single Documentum xDB
Server. If one server fails, the other servers remain available. XDS Registry Servers may reside
on different machines and different locations.

The whitepaper High Availability Configuration For a Multiple Region EMC Healthcare Integration
Portfolio (HIP) Registry and Repository provides more details on HADR.

Usage Reporting
Usage Reporting is implemented to support the subscription pricing model for customers. That is,
the customers can be billed based on the usage of the product against the licenses purchased. Usage
Reporting provides a monthly report on the usage of the product by the customer. The usage of
Registry is calculated based on the number of unique patients registered in the Registry.

Standard Usage Reports are scheduled to be automatically generated on the last day of each month.
However, you can generate adhoc reports.

A Usage Reporting web application provides the ability to view the monthly reports and to generate
adhoc reports. The monthly reports are stored in a library called UsageReports in xDB. However,
adhoc reports that users generate are not stored in any location; you can only download them
to your local system.

You can launch the Usage Reporting user interface by using the following URL:
localhost:port/registry/reports

22

Features

The default username and password to log in to the web application are configured in the
registry.properties file. You can modify the login configuration, if required.

Configuring the Usage Report Properties, page 60 provides information on configuring the Usage
Reporting properties.

When you log in to Usage Reporting, you can see a list of monthly reports that are generated. You
can click a report to view the details.

Each report shows the following details:
• Unique Patient Count: Number of unique patients registered in the Registry.

• Generated on: Date and time when the report is generated.

• Generated By: Name of the user who generates the report.

• Host: IP of the host machine that generates the reports.

• Type: Name of the product for which the reports are generated.

• Version: Version of the product for which the reports are generated.

The Generate Report Now button enables you to create adhoc reports that shows the usage details
from the day of product purchase.

The name of the reports are same as their IDs. The report ID consists of the timestamp when the
reports are generated. That is, the ID of a report is of the format yyyyMMddHHmmss.

The Usage Reporting user interface also provides options to download the reports in XML, HTML,
or PDF formats.

23

Features

24

Chapter 3
Security Configuration

This chapter contains the following topics:

• Access Control Settings, page 25

• Communication Security Settings, page 29

• Data Security Settings, page 30

• Secure Deployment Settings, page 30

Access Control Settings

Authentication Configuration

Trusted Node Authentication

XDS Registry Server supports Trusted Node Authentication using TLS certificates.

HIP provides system security through SSL/TLS standards. System security provides access to HIP
systems through data encryption and data confidentiality. TLS performs mutual authentication of
client and server systems and encryption of data through certificates issued by the assigning authority.

The TLS keystore and truststore credentials are configured in the registry.properties file.
These credentials do not have any default value.

XDS Registry requires you to configure the connection credentials to the xDB database where the
healthcare information is stored. The connection credentials do not have default values.

XDS Registry Server SOAP requests can be configured to be accessed through HTTP (non-secure),
which allows these requests to be sent to the HIP XDS Registry Server without any trusted node
authentication. However, this does not disable XUA. Enabling Trusted Node Authentication is
optional.

25

Security Configuration

User Authentication

The user authentication settings control the process of verifying the identity claimed by a user for
accessing the product.

HIP provides user security through Cross Enterprise User Assertion (XUA).

The system security authenticates systems; however, the server enterprise system is not aware of users
defined on the client enterprise systems. XUA provides the ability to implement cross-enterprise user
authentication to prevent data manipulation and provide data integrity. HIP systems provide XUA
through WS-Security and WS-Trust standards.

The user authentication credentials are configured in the registry.properties file.

Trusted Host Access Configuration

The default ITI-18 endpoint provides Patient Privacy enforcement support to the EMR applications.
The EMR applications can enable or disable PPIC. If enabled, only authorized users can access the
metadata of patient records. However, to access the metadata, the EMR applications must provide
sufficient authorization details in the request.

The applications such as Connector for Epic (C4E), Clinical Archiving, which do not support PPIC
feature, but still need to access XDS Registry to register or deregister documents, cannot use the
default ITI-18 endpoint because the default ITI-18 endpoint needs sufficient authorization details
to process the request.

Therefore, to provide ITI-18-transaction access to such applications, you can enable an additional
ITI-18 endpoint that:
• does not require authorization details to be sent over the request

• permits only a set of configured list of trusted hosts

• permits only secured transport (HTTPS)

This additional endpoint is enabled by setting the following property to true in the
registry.properties file:
registry.trusted.hosts.enabled=true

By default, this property is set to false.

If this trusted host access endpoint is enabled, the applications that do not support PPIC feature
can execute ITI-18 transactions without having to use the default endpoint that the other EMR
applications use.

You can access this endpoint by using the following URI:
https://<host:port>/registry/services/trustedhosts/xds-iti18

The default trusted host is localhost.

You can configure a list of trusted hosts in the registry-context-extension.xml file.

To configure the list of trusted hosts:
1. Go to <HIP_HOME>/registry.

26

Security Configuration

2. Open registry-context-extension.xml.

3. Add the IP address of all trusted hosts as follows:
<util:list id="trustedHostsIPAddressList" list-class="java.util.ArrayList">
<value>10.31.170.192</value>
<value>10.31.170.193</value>
</util:list>

By default, the additional ITI-18 endpoint can only be accessed over a secured transport.

4. If you need to provide access over non-secure channel, add the following bean:
<bean id="com.emc.healthcare.commons.core.cxf.CompositeSoapServiceAccessValidator"

class="com.emc.healthcare.commons.core.cxf.CompositeSoapServiceAccessValidator">
<constructor-arg index="0">
<list>
<--!<ref bean="com.emc.healthcare.commons.core.cxf.HttpsRequestAccessValidator"/>-->
<ref bean="com.emc.healthcare.commons.core.cxf.WhitelistIPAddressAccessValidator"/>
</list>
</constructor-arg>

</bean>

Configuring the IHE Endpoint for Trusted Hosts, page 56 provides the configuration information on
enabling the IHE endpoint for trusted hosts.

Patient Privacy Policy Enforcement

Users require authorization to access the healthcare metadata of a patient and documents in an
XDS Affinity Domain. Patient Privacy Policy (PPP) enforcement enables the XDS Registry Server to
perform authorization for specific requests by user.

The Healthcare Registry Services act as a Policy Enforcement Point (PEP) in conjunction with a
PDP Server (for example, Patient Privacy and Informed Consent (PPIC) Authorization Server) and
controls the authorization. When the Registry is queried to fetch the documents, the authorization
server checks if the user has permission to view all the documents that the query returns. The user is
permitted to view only those documents for which permission is granted by the patient privacy policy.

27

Security Configuration

The following figure shows the PPIC authorization flow:

The functions of PPIC Authorization Server and Registry Services are as follows:
• PPIC Authorization Server:

PPIC Authorization Server maintains the Patient Privacy policies.

• XDS Registry Services:

— XDS Registry Services receive Registry Stored Query Request (ITI-18) and perform
records lookup in the Registry database.

— If ITI-18 Request is for Object Reference, XDS Registry does not perform policy enforcement
and returns all object references to the Document Consumer.

— If ITI-18 Request is for Leaf Class, the PEP component within the XDS Registry
Services prepares Policy Decision Request containing Document Entry metadata
such as entryUUID, healthcare facility code, and so on. The PEP component uses
hip-ppic-mapping.properties to include all metadata attributes in the request. In

28

Security Configuration

an XUA enabled environment, the PEP component retrieves Subject ID and Subject Role
information from SAML token and passes them in the PDP Request.

— On receiving the Policy Decision Request, PPIC Server evaluates all policies and performs
lookup for additional metadata that is required for policy evaluation, using the registered
Policy Information Point (PIP) component.

— Based on the response received from PPIC Server, PEP component within the XDS Registry
Services filters the documents and returns the metadata of only the authorized documents to
the Document Consumer.

This feature can be enabled or disabled according to the requirement.

Configuring the PPIC Properties, page 60 provides details about configuring the PPIC properties.

EMC Documentum PPIC Installation Guide provides details about installation and configuration of
PPIC Server.

Communication Security Settings
The communication security settings enable the establishment of secure communication channels
between the product components as well as between product components and external systems
or components.

Port Usage

The HIP XDS Registry Server endpoint URLs are configured for each request type, which includes
the optional port. No default port is provided.

XDS Registry Server creates audit messages for every request and response that it processes.
The server prefixes audit messages with a unique audit source ID to easily identify the origin
of the messages. The Audit Trail and Node Authentication Auditing (ATNA) properties in the
registry.properties file provide the XDS Registry Server with connection information for
an ATNA audit server.

The default port for ATNA audit server is 514 for ATNA SOAP requests.

The following table shows the ATNA port details:

Component Service Protocol Port Description

ATNA Audit
Server

ITI-20 Audit
Event.

SOAP 514 ATNA audit
server

Network Encryption

The HIP Registry uses the HTTPS protocol for XDS Registry Server endpoints to achieve network
encryption.

29

Security Configuration

Data Security Settings
XDS Registry Server does not provide any data security settings, as all sensitive healthcare data is
stored in the xDB database. The xDB database is responsible for securing this data internally.

Encryption of Data at Rest

XDS Registry Server data is stored in xDB and xDB is responsible for data encryption of the data at
rest. The xDB database currently does not provide data encryption, but can be achieved by using
encrypted file stores.

Secure Deployment Settings
You must follow the instructions given below to securely deploy the product:

• Use HTTPS for all network communications with the HIP XDS Registry Server SOAP requests.

• Configure TLS keystore and truststore credentials in the registry.properties file.

• Use XUA for user authentication with a Secure Token Server. Configure the STS server credentials
in the registry.properties file.

• Use the HIP encryption password to encrypt sensitive user credentials.

• For the XDS Registry xDB healthcare database, follow the xDB recommended procedures to
secure the xDB healthcare database.

30

Chapter 4
Before You Install

Before beginning installation, ensure that your system meets the requirements.

The EMC Documentum XDS Registry Release Notes provides information on the system requirements
for your product. This documentation is available from EMC Online Support.

31

https://support.emc.com

Before You Install

32

Chapter 5
Installation

This chapter contains the following topics:

• Pre-Installation Tasks, page 33

• Installing Documentum xDB Healthcare Database, page 34

• Installing Third-party Library Dependencies, page 34

• Creating the HIP Configuration Directory, page 37

• Deploying the Property Files in the HIP Configuration Directory, page 38

• Deploying the HIP Registry WAR File on Windows, page 39

• Deploying the HIP Registry WAR File in Linux, page 40

• Enabling Remote xDB Instance Support, page 41

Pre-Installation Tasks
Before deploying XDS Registry Server, ensure that you have prepared the installation environment
with the following components:

Component Task

XDS Registry Installation
Files

Download the following files from EMC Download Center:
• Files for XDS Registry deployment: hip-registry-1.7.0
.zip

• HIP password encryption tool: hip-encryptpassword-1.7
.0.zip

PPIC Server Install HIP PPIC Server 1.7, if PPIC is enabled for XDS Registry.

EMC Documentum PPIC Server Installation Guide provides the
instructions for installing, and configuring PPIC Server.

J2EE Web Application Install either one of the following application servers:
• Apache Tomcat 7 – 7.0.42

• Oracle WebLogic 12.1.1 or Oracle WebLogic 12.1.2

33

Installation

Component Task

Firewall Access Provide the XDS Registry Server with access outside the firewall
for communicating with other healthcare community members.
When configuring the XDS Registry, create a record of the ports
you use and the direction you want to allow connectivity.

xDB xHive Installation Files Install xDB 10.5.5 or xDB 10.5.8.

Apache Ant Install Apache Ant 1.9.3.

JDK Install JDK 1.7.x

EMC Documentum XDS Registry Release Notes provides a complete list of system requirements.

Installing Documentum xDB Healthcare
Database
To set up the Documentum xDB healthcare database:
1. Install Documentum xDB on the machine that hosts your Documentum xDB database.

You may skip this step if you already have Documentum xDB in your environment. The
Documentum xDB Manual provides the details of installation instructions.

2. Create the Documentum xDB Healthcare database.
Use the Documentum xDB Administrator tool to create a Healthcare database to hold registry
data. Allocate enough resources to the default and temporary segments to match your
performance requirements. Record the name of database for use in later configuration steps. This
installation guide mentions Healthcare as a sample database name. The Documentum xDB
Manual provides database creation instructions.

3. Establish user access for the Documentum xDB Healthcare database.
Create a non-privileged user account in the Documentum xDB Healthcare database. XDS
Registry Server uses this account to access the Documentum xDB Healthcare database. Record
the user name and password for use in later configuration steps. This installation guide mentions
HealthcareServer as a sample user name.

Installing Third-party Library Dependencies
You must install the following third-party library dependencies for successful deployment of the
Registry Server WAR file:
• xDB

• Camel

• HAPI

• IHE

34

Installation

Obtaining the Library Dependencies
To obtain the xDB jar files:
1. Create a folder in the local path to copy the xDB jar files.

For example:
C:\jarfiles\xdb

2. Go to the xDB installation directory.
For example:
C:\Program Files\xDB\

3. Copy the lib folder containing the jar files from <xDB_install_dir> to C:\jarfiles\xdb.
For example:
C:\jarfiles\xdb\lib

XDS Registry Server must use the xDB jar files located in the /lib and /lib/core directories to
enable the Registry to communicate with Documentum xDB. You have to manually add the jar files
to the XDS Registry /lib directory.

To obtain the camel jar files:
1. Create a folder in the local path to copy the Camel jar files.

For example:
C:\jarfiles\camel

2. Go to www.camel.apache.org.

3. Download the following files:
For Windows:
apache-camel-2.12.1.zip

For Linux:
apache-camel-2.12.1.tar.gz

4. Extract the zip file to a local path.
For example,
C:\apache-camel-2.12.1

5. Go to <local path>\apache-camel-2.12.1.

6. Copy the lib folder containing the jar files to C:\jarfiles\camel.
For example:
C:\jarfiles\camel\lib

To obtain the HAPI jar files:
1. Create a folder in the local path to copy the HAPI jar files.

For example:
C:\jarfiles\hapi

2. Go to www.sourceforge.net.

35

Installation

3. Download hapi-dist-2.0-all.zip.

4. Extract the zip file to a local path.
For example,
C:\hapi-dist-2.0-all

5. Go to <local path>\hapi-dist-2.0-all folder.

6. Copy the lib folder containing the jar files to C:\jarfiles\hapi.
For example:
C:\jarfiles\hapi\lib

Due to licensing restrictions, HIP products do not deliver the required HAPI library jar files used
when parsing HL7 feeds.

To obtain the IHE jar files:
1. Create a folder in the local path to copy the IHE jar files.

For example:
C:\jarfiles\ihe

2. Go to www.projects.openhealthtools.org.

3. Download the org.openhealthtools.ihe_2.0.0.zip file.

4. Extract the zip file to a local path.
For example:
C:\openhealthtools\

5. Go to C:\openhealthtools.

6. Copy the following jar files to the C:\jarfiles\ihe folder:
• org.openhealthtools.ihe.atna.context_2.0.0.jar

• org.openhealthtools.ihe.atna.nodeauth_2.0.0.jar

• org.openhealthtools.ihe.utils_2.0.0.jar

7. Go to www.repo.openehealth.org.

8. Copy the following jar file to the C:\jarfiles\ihe folder:
org.openhealthtools.ihe.atna.auditor-2.0.0-p1.jar

To verify the jar files:
1. Check if the checksum values of the downloaded jar files match with the checksum values

mentioned in the following table for corresponding files:

Filename Checksum Value

apache-camel-2.12.1.zip 8aae88dec9558606cfd1b4bd6aaa2438

org.openhealthtools.ihe_2.0.0.zip ac7bee0ac7d0db9becf71d29690d45d3

org.openhealthtools.ihe.atna.auditor-2.0.0-p1.jar 33c0fbc631ab539d70dd0bb6fd343fee

hapi-dist-2.0-all.zip ee574cb7b458ea934a45d71a3c5da5e2

36

Installation

Installing the Library Dependencies
1. Download hip-registry-1.7.0.zip from EMC Download Center.

2. Extract hip-registry-1.7.0.zip to a local folder.
For example:
C:\hip-registry-1.7

You can find the build.xml file in the C:\hip-registry-1.7 folder.

3. Go to the command prompt and navigate to the directory where build.xml is located.
For example:
C:\hip-registry-1.7

4. Run build.xml using the following command:
ant -f build.xml

5. Type the complete path of Camel home directory when the script prompts you to enter the
Camel home directory.
For example:
C:\jarfiles\camel

6. Type the complete path of HAPI home directory when the script prompts you to enter the HAPI
home directory.
For example:
C:\jarfiles\hapi

7. Type the complete path of xDB home directory when the script prompts you to enter the xDB
home directory.
For example:
C:\jarfiles\xdb

You must enter the xDB home directory where xDB is installed. If xDB is installed in a remote
machine, copy all jar files from the xDB lib folder to a local folder and rename the local folder to
xDB home directory.

8. Type the complete path of OHT home directory when the script prompts you to enter the OHT
home directory.
For example:
C:\jarfiles\ihe

After you run the ant -f build.xml command, you get the install folder as follows:
C:\hip-registry-1.7\install

You can find the hip-registry-1.7.0.war file in the install folder.

Creating the HIP Configuration Directory
The HIP servers maintain configuration information in a directory called HIP configuration
directory that is located outside the WAR file. This design enables users to easily upgrade to
newer versions of the software by replacing the server WAR file.

37

Installation

By default, HIP uses the following directory:
<user.home>/.hip

where <user.home> is the home directory of the user who implements XDS Registry Server.

For example:
C:\Users\username\

If this directory does not already exist, create a folder named .hip in your user.home directory
by typing:
.hip.

Ensure that you place a dot at the end of the name. Windows removes the trailing dot.

The com.emc.Healthcare.com Java system property defines the location of the configuration
directory. If you want to override the default location of the HIP server configuration information,
override the com.emc.Healthcare.com system property when you start your J2EE Web
Application container.

Use the following syntax:
-Dcom.emc.Healthcare.home=<hip_config_directory>

Deploying the Property Files in the HIP
Configuration Directory
After creating the HIP configuration directory, copy the properties files to the HIP configuration
directory.

To copy the property files to the HIP directory:
1. Go to the install folder obtained after running the build command described in Step 4.

For example:
C:\hip-registry-1.7\install

2. Extract hip-registry-1.7.0.war.

3. Go to \hip-registry-1.7.0\config\.

4. Copy the registry folder to C:\Users\username\.hip\.
The resulting path should be <hip_config_dir>/registry.

You must configure the property files according to your environment, for successful installation.

Chapter 6, Post-Installation Configuration describes the configuration of property files required for
successful installation.

38

Installation

Deploying the HIP Registry WAR File on
Windows
Before deploying the WAR file, ensure that you have completed all configuration tasks described
in Chapter 6, Post-Installation Configuration.

HIP supports the following:
• Deploying the HIP Registry WAR File Using Tomcat, page 39

• Deploying the HIP Registry WAR File Using WebLogic, page 39

Follow the procedure described for the application server you have installed.

Deploying the HIP Registry WAR File Using Tomcat
1. Stop the J2EE Web Application container.

2. Copy the XDS Registry Server WAR file to the following directory:
<tomcat_install_dir>/webapps/

3. Rename the WAR file to registry.war.

4. Start the J2EE Web Application container to expand the WAR file.
The examples in this guide are provided with the assumption that the WAR file is deployed in
<tomcat_install_dir>/webapps/.

Deploying the HIP Registry WAR File Using WebLogic

Before deploying the WAR file, perform the following tasks:
• Set the following environment variable:

Name: DOMAIN_HOME

Value: ~\Oracle\Middleware\user_projects\domains\domain{domain used
for deployment}

• Set the following System Properties in the WebLogic startup script:

com.sun.xml.ws.spi.db.BindingContextFactory=com.sun.xml.ws.db.glassfish
.JAXBRIContextFactory javax.xml.bind.JAXBContext=com.sun.xml.bind.v2
.ContextFactory javax.wsdl.factory.WSDLFactory=com.ibm.wsdl.factory
.WSDLFactoryImpl

• Set the HIP home location in the startup script to get the log files generated in the
<user.home>/.hip/ folder.

Example:

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.emc.healthcare.home=C:\Users
\<username>\.hip

39

Installation

To deploy the war file using WebLogic:
1. Log in to the WebLogic Admin console.

2. Go to base_domain > deployment.

3. Click Install.

4. From Install Application Assistant, click the upload your file link in the Note.

5. From Deployment Archive, browse and select the hip-registry-1.7.0.war file.

6. Click Next.

7. Select Install as application.

8. Click Next.

9. Click Finish.

10. Check if the deployment state of HIP Registry is Active.
The Active state shows a successful deployment.

Deploying the HIP Registry WAR File in Linux
1. Log in as root user.

2. Copy hip-registry-1.7.0.war to the following location:
$CATALINA_HOME/webapps

3. Run the following command to change tomcat installation owner to dmadmin.
chown –R $CATALINA_HOME dmadmin:dmadmin

4. Set dmadmin environment variables.

5. Set HIP Java options in $CATALINA_HOME/bin/setenv.sh.
JAVA_OPTS="-Xms512m -Xmx1g -XX:MaxPermSize=512m -Dcom.emc.healthcare.home=/home/dmadmin/.hip"

6. As dmadmin, copy the .hip folder to the following location:
/home/dmadmin

7. As root user, create tomcat startup/etc/init.d/tomcat setting the values appropriately.
For example:
#!/bin/bash
description: Tomcat Start Stop Restart
processname: tomcat
chkconfig: - 90 10
Source function library
. /etc/rc.d/init.d/functions

CATALINA_HOME=/app/apache-tomcat-7.0.53
TOMCAT_OWNER=dmadmin

#Set Startup Options for HIP
#See $CATALINA_HOME/bin/setenv.sh
#Check they have been used using ps-ef|grep tomcat

case $1 in
start)

40

Installation

echo "Starting tomcat under dmadmin account..."
echo "Note:xDB Must be Running or HIP Registry startup will fail..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/startup.sh"
;;

stop)
echo "Stopping tomcat..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/shutdown.sh"
;;

restart)
echo "Restarting tomcat under dmadmin account..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/shutdown.sh"
sleep 2
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/startup.sh"
sleep 2
;;

status)
status tomcat
;;

*)
echo "Usage: $0 {start|stop|restart|status}"
exit 1
;;

esac
exit 0

8. Change permissions and set Tomcat to auto-start on reboot.
chmod +x /etc/init.d/tomcat
chkconfig tomcat on

Enabling Remote xDB Instance Support
1. Open the registry.properties file.

2. Set the value of xdb.readNode.bootstrapFileName as follows:
xdb.readNode.bootstrapFileName=xhive://<host-name>:1235>

where <host-name> is the IP address of the remote xDB instance.

3. Edit the xdb.properties file located in C:\Program Files\xDB\conf as follows to ensure
that the remote xDB instance accepts connections from other machines.
xDB server listen address, '*' to accept all connections,
'localhost' to only accept local connections
XHIVE_SERVER_ADDRESS=*
xDB webserver listen address, '*' to accept all connections,
'localhost' to only accept local connections
XHIVE_WEBSERVER_ADDRESS=*

4. Save and close the file.

5. Restart xDB and Registry.

41

Installation

42

Chapter 6
Post-Installation Configuration

This chapter contains the following topics:

• Configuring Registry Properties File, page 43

• Securing the Registry Properties File, page 61

• Configuring the Registry Configuration XML File, page 61

• Configuring the HIP PPIC Mapping Properties File, page 63

• Configuring the Web Container Heap Memory, page 65

• Configuring SSL for Tomcat, page 65

• Configuring SSL for WebLogic, page 66

• Configuring the XUA Properties, page 66

Configuring Registry Properties File
The registry.properties file contains user-definable properties that provide XDS Registry
Server with information about connecting to other systems.

registry.properties, page 87 shows a sample of this file.

During startup, the XDS Registry Server first evaluates the registry.properties file, and then
evaluates the System Properties. Properties are set in the order they are encountered. If you set a
property in multiple locations, the final occurrence of the property takes precedence.

To configure registry.properties, open <hip_config_dir>/registry/registry
.properties and configure the properties as described in the following topics:

• Configuring the Registry Property, page 44

• Configuring the Documentum xDB Properties, page 44

• Configuring the Registry Configuration File Properties, page 52

• Configuring the MLLP Parameters, page 53

• Configuring the Custom SOAP Routes Properties, page 54

• Configuring the Request and Response Validator Properties, page 55

• Configuring the IHE Endpoint for Trusted Hosts, page 56

43

Post-Installation Configuration

• Configuring the HTTPS Properties, page 56

• Configuring the ATNA Properties, page 58

• Configuring the XUA Related Properties, page 59

• Configuring the PPIC Properties, page 60

• Configuring the Usage Report Properties, page 60

Configuring the Registry Property

The following table shows the configuration of registry property:

Property Description

description This optional property specifies a description for XDS
Registry Server. The description is used only for display
purposes.

This property has no default value.

For example:

description=XDS Registry

Configuring the Documentum xDB Properties

The xDB properties enable the Registry to connect to the Documentum xDB Healthcare database.

These properties also include the HADR properties that define the primary read/write and backup
read/write nodes.

Configuring the HADR Properties, page 45 provides more details on HADR property configuration.

The following three xDB properties are mandatory properties. If you fail to configure these
properties, the Registry will fail to start.

The following table shows the configuration of Documentum xDB properties:

Property Description

xdb.libraryPath This property specifies the location in the Documentum
xDB database where XDS Registry Server stores the data.
This property is pre-configured with the following value,
but you can change this value to specify a different location.

For example:

xdb.libraryPath=/registry

44

Post-Installation Configuration

Property Description

xdb.cachePages This property specifies the number of cache pages for the
page server defined in xdb.bootstrapFileName.

For example:

xdb.cachePages=0

xdb.maximumPoolSize This property specifies the maximum pool size for the page
server defined in xdb.bootstrapFileName.

For example:

xdb.maximumPoolSize = 20

Configuring the HADR Properties

The HADR properties define the primary read/write and backup read/write nodes.

HADR properties have been defined to avoid the exceptions occurring for both read and write
transactions when only one xDB is available in XDS Registry for both read and write, and that xDB
becomes unavailable. To avoid a transaction failure, the xDB database is separated into two —
one for read and another for write.

The xDB master is set up as the write node and xDB replica is set up as the read node. In this
design, the read operation will continue to operate even when the Master xDB (write node) is down.
Similarly, the write operation will continue when the read node is down.

Besides this, an additional xDB server with separate nodes for read and write is setup to act as backup
node when the primary nodes are unavailable.

The primary read node parameters are mandatory where as the primary write node parameters are
optional. Each takes a single parameter.

The backup read/write node parameters are comma separated list that can include multiple backup
server nodes. The backup read/write node parameters are optional.

The following table shows the configuration of primary read node parameters:

Property Description

xdb.readNode.bootstrapFileName This mandatory property specifies the connection to a
dedicated page server that runs behind the specified TCP/IP
port. A bootstrap specifies a connection to a federation.

For example:

xdb.readNode.bootstrapFileName=xhive:/

/localhost:1235

45

Post-Installation Configuration

Property Description

xdb.readNode.databaseName This mandatory property specifies the name of the
Documentum xDB database. You created and configured
this database in Installing Documentum xDB Healthcare
Database, page 34.

This property has no default value.

For example:

xdb.readNode.databaseName=XDS Registry

xdb.readNode.userName This mandatory property specifies the username that the
XDS Registry Server uses to access the Documentum xDB
database. You created and configured this user account in
Installing Documentum xDB Healthcare Database, page 34.

This property has no default value.

For example:

xdb.readNode.userName=HealthcareServer

xdb.readNode.password This mandatory property specifies the password of the
user that the XDS Registry Server uses to access the
Documentum xDB.

This property has no default value.

Note: Perform the following steps to encrypt the password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>

HipEncryptPassword.bat

2. Enter clear text password>Password

HIP_ENCR_PASS=JxwGkf59eneCKgVhZljyEA==

After generating the encrypted password,
the hip.keystore file will be generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to hip_readNode
.keystore.

You can give any valid name for the file when you
rename. hip_readNode.keystore is an example.

4. Copy the hip_readNode.keystore file
from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set xdb.readNode.keystore property as follows:

46

Post-Installation Configuration

Property Description

xdb.readNode.keystore=${com.emc.healthcare

.home}/registry/hip_readNode.keystore

After encryption, in registry.properties file, the
xdb.readNode.password.property appears as
follows:

xdb.readNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.readNode.keystore This property is required if the HIP encrypted password
is configured.

For example:

xdb.readNode.keystore=${com.emc.healthcare

.home}/registry/hip_readNode.keystore

The following table shows the configuration of primary write node parameters (for single node
deployment, set these four values to blank):

Property Description

xdb.writeNode.bootstrapFileName This property specifies the bootstrap filename for the Write
node.

For example:

xdb.writeNode.bootstrapFileName=xhive:/

/localhost:1245

xdb.writeNode.databaseName This property specifies the database name for the Write
node.

For example:

xdb.writeNode.databaseName=Healthcare

xdb.writeNode.userName This property specifies the user name for the Write node.

For example:

xdb.writeNode.userName=HealthcareServer

47

Post-Installation Configuration

Property Description

xdb.writeNode.password This property specifies the password for the Write node.

Note: Perform the following steps to encrypt the password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows: C:
\EncryptPassword>HipEncryptPassword.bat

2. Enter clear text password>Password

HIP_ENCR_PASS=JxwGkf59eneCKgVhZljyEA==

After password encryption, the hip.keystore file
will be generated in the C:\EncryptPassword\
folder.

3. Rename the hip.keystore file to hip_writeNode
.keystore (or any valid file name).

4. Copy the hip_writeNode.keystore file from
C:\EncryptPassword\ to {com.emc.healthcare
.home}/registry/.

5. Set xdb.writeNode.keystore property as follows:

xdb.writeNode.keystore=${com.emc.healthcare

.home}/registry/hip_writeNode.keystore

After encryption, in registry.properties file, the
xdb.writeNode.password.property appears as
follows:

xdb.writeNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.writeNode.keystore This property is required if the HIP encrypted password
is configured.

For example:

xdb.writeNode.keystore=${com.emc.healthcare

.home}/registry/hip_writeNode.keystore

The following table shows the configuration of backup read node parameters (optional):

xdb.backup.readNode
.bootstrapFileName

This property specifies the bootstrap filename for the
backup Write node.

For example:

xdb.backup.readNode.bootstrapFileName=xhive:/

/10.8.55.239:1245

48

Post-Installation Configuration

xdb.backup.readNode
.databaseName

This property specifies the database name for the backup
Read node.

For example:

xdb.backup.readNode.databaseName=Healthcare

xdb.backup.readNode.userName This property specifies the user name for the backup Read
node.

For example:

xdb.backup.readNode.userName=HealthcareServer

xdb.backup.readNode.password This property specifies the password for the backup Read
node.

For example:

xdb.backup.readNode.password=password

Note: Perform the following steps to encrypt the password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>

HipEncryptPassword.bat

2. Enter clear text password>Password

HIP_ENCR_PASS=JxwGkf59eneCKgVhZljyEA==

After generating the encrypted password,
the hip.keystore file will be generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to hip
_bkupreadNode.keystore.

You can give any valid name for the file when you
rename. hip_bkupreadNode.keystore is an
example.

4. Copy the hip_bkupreadNode.keystore file
from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set xdb.backup.readNode.keystore property as
follows:

xdb.backup.readNode.keystore=${com.emc

.healthcare.home}/registry/hip_bkupreadNode

.keystore

49

Post-Installation Configuration

After encryption, in registry.properties file, the
xdb.backup.readNode.password.property appears
as follows:

xdb.backup.readNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.backup.readNode.keystore This property specifies the location of the backup read node
keystore file.

This property is required if the HIP encrypted password
is configured.

xdb.backup.readNode.keystore=${com.emc

.healthcare.home}/registry/hip_bkupreadNode

.keystore

The following table shows the configuration of backup write node parameters (optional):

xdb.backup.writeNode
.bootstrapFileName

This property specifies the bootstrap filename for the
backup Write node.

For example:

xdb.backup.writeNode.bootstrapFileName=xhive:/

/10.8.55.229:1235

xdb.backup.writeNode
.databaseName

This property specifies the database name for the backup
Write node.

For example:

xdb.backup.writeNode.databaseName=Healthcare

xdb.backup.writeNode.userName This property specifies the user name for the backup Write
node.

For example:

xdb.backup.writeNode.userName=HealthcareServer

50

Post-Installation Configuration

xdb.backup.writeNode.password This property specifies the password for the backup Write
node.

For example:

xdb.backup.writeNode.password=password

Note: Perform the following steps to encrypt the password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>

HipEncryptPassword.bat

2. Enter clear text password>Password

HIP_ENCR_PASS=JxwGkf59eneCKgVhZljyEA==

After generating the encrypted password,
the hip.keystore file will be generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to hip
_bkupwriteNode.keystore.

You can give any valid name for the file when you
rename. hip_bkupwriteNode.keystore is an
example.

4. Copy the hip_bkupwriteNode.keystore
file from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set xdb.backup.writeNode.keystore property
as follows:

xdb.backup.writeNode.keystore=${com

.emc.healthcare.home}/registry/hip

_bkupwriteNode.keystore

After encryption, in registry.properties file, the
xdb.backup.writeNode.password.property
appears as follows:

xdb.backup.writeNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

51

Post-Installation Configuration

xdb.backup.writeNode.keystore This property specifies the location of the backup write
node keystore file.

This property is required if the HIP encrypted password
is configured.

For example:

xdb.backup.writeNode.keystore=${com.emc

.healthcare.home}/registry/hip_bkupwriteNode

.keystore

Note:
• Backup list can be blank and optional.

• Primary write node and read node can be configured with same values.

Configuring the Registry Configuration File Properties

The following table shows the Registry configuration file properties that enable the Registry to find
and use the Registry configuration file:

Property Description

config.autoImport This property specifies whether the system must
automatically update the Documentum xDB-based
registry-config.xml file each time it detects the
changes made to the file system version.

For example:

config.autoImport=false

config.document This property specifies the path and filename of the
registry-config.xml file that resides in the file system.
If this document does not already exist in the Documentum
xDB database, Registry Server loads the file from the file
system to the Documentum xDB database regardless of the
value of the config.autoImport property.

By default, the Registry Server stores the file in the HIP
Configuration directory.

For example:

config.document=${com.emc.healthcare.home}

/registry/registry-config.xml

The Documentum xDB database stores this file in the
Documentum xDB library path that is defined in the
xdb.libraryPath property.

52

Post-Installation Configuration

Configuring the MLLP Parameters

The following table shows the configuration of MLLP parameters that identify and control the ports
where the Registry Server listens for patient identity feeds:

Property Description

mllp.port This property specifies the non-secure port used to listen to
the ITI-8 Patient Identity Feed messages. When set to 0, the
Registry Server will not open a listening port.

The default value is 0.

For example:

mllp.port=9182

mllp.securePort This property specifies the optional secure port used to listen
to the ITI-8 Patient Identity Feed messages. When set to 0, the
Registry Server will not open a listening port.

The default value is 0. When not set to 0, you must also
configure the HTTPS properties in this file.

For example:

mllp.securePort=9183

Note: The https.server.privateKeyPassword property
should be configured if you enable the MLLP secure port. The
value of this property must be the private key password.

mllp.routeBuilderScriptSource This property specifies the optional property that enables you
to override the default MLLP RouteBuilder script included in
the Registry Server installation. The script is located within
the classpath of one of the JAR files. Copies of the script
are also located in the WAR file package and in the HIP
configuration directory.

If this property is not defined, Registry Server uses the default
value, which is to use the script included with the Registry
Server installation in the classpath.

For example:

mllp.routeBuilderScriptSource=classpath:com

/emc/healthcare/xds/registry/commons

/MllpRouteBuilder.groovy

If you change the script located in the /ROUTES directory of
the WAR file, use the following syntax to load the altered
script.

mllp.routeBuilderScriptSource=ROUTES

/MllpRouteBuilder.groovy

53

Post-Installation Configuration

Property Description

If you change the script located on the file system, load the
altered script using the absolute path to the file.

For example:

mllp.routeBuilderScriptSource=file:C:\\absolute\

\path\\myMllp.groovy

Ensure that you use a path that is appropriate for your
operating system. This example shows a sample Windows
path.

Configuring the Custom SOAP Routes Properties

The following table shows the configuration of SOAP parameter:

Property Description

soap.routeBuilderScriptSource This optional property specifies whether you want to
override the default SOAP RouteBuilder script provided
with the Registry Server installation.

The default script is located within the classpath of one of
the JAR files. Copies of the script are also located in the
WAR file package and in the HIP configuration directory.

If this property is not defined, the Registry Server uses the
default value, which is to use the script included with the
Registry Server installation in the classpath.

For example:

soap.routeBuilderScriptSource=classpath:com

/emc/healthcare/xds/registry/commons

/SoapRouteBuilder.groovy

If you change the script located in the/ROUTES directory of
the WAR file, use the following syntax to load the altered
script.

For example:

soap.routeBuilderScriptSource=ROUTES

/SoapRouteBuilder.groovy

Note: The SoapRouteBuilder.groovy file must have
the xuaEnabled property defined in the file. The server
fails to start if the property is missing in the file.

54

Post-Installation Configuration

Property Description

If you change the script located on the file system, load the
altered script using the absolute path to the file.

For example:

soap.routeBuilderScriptSource=file:C:\

\absolute\\path\\mySOAP.groovy

Ensure that you use a path that is appropriate to your
operating system. This example shows a Windows path.

Configuring the Request and Response Validator
Properties

The request and response validator flags are located in the spring configuration file in the deployed
WAR. You must enable these flags to avoid problems that may occur if the request is not correct.

The following table shows the configuration of request and response validator properties:

Property Description

Request Validator Properties

registry.iti18.requestValidator
.enabled

registry.iti42.requestValidator
.enabled

registry.iti51.requestValidator
.enabled

registry.iti61.requestValidator
.enabled

registry.iti62.requestValidator
.enabled

These optional properties specify whether to disable
the incoming message validation for the specified IHE
transaction.

These flags are enabled by default.

For example:

registry.iti18.requestValidator.enabled=true

55

Post-Installation Configuration

Property Description

Response Validator Properties

registry.iti18.responseValidator
.enabled

registry.iti42.reponseValidator
.enabled

registry.iti51.responseValidator
.enabled

registry.iti61.responseValidator
.enabled

registry.iti62.responseValidator
.enabled

These optional properties specify whether to disable
the outgoing message validation for the specified IHE
transaction.

These flags are enabled by default.

For example:

registry.iti18.responseValidator.enabled=true

Configuring the IHE Endpoint for Trusted Hosts

The IHE endpoint for trusted hosts is provided for applications such as Connector for Epic (C4E),
Clinical Archiving, which do not support PPIC feature, and cannot use the default ITI-18 endpoint to
access XDS Registry to register/deregister documents.

The following table shows the configuration to enable the IHE endpoint for trusted hosts:

Property Description

registry.trusted.hosts.enabled This property specifies whether to enable the IHE endpoint
for trusted hosts.

The default value is false.

For example:

registry.trusted.hosts.enabled=false

Configuring the HTTPS Properties

The HTTPS properties enable XDS Registry Server to use the secure HTTPS communication. You
must configure these properties if mllp.securePort is set to a non-zero value.

The following table shows the configuration of HTTPS properties. The first four HTTPS
configurations are required if XUA is enabled.

56

Post-Installation Configuration

Property Description

https.keyStore This optional property specifies the location of the
keystore on the system where you keep the private
SSL certificates for this machine. If you are not using
HTTPS, comment this property by prefixing it with a
pound sign (#).

This property has no default value.

For example:

https.keyStore==${com.emc.healthcare.home}

/keystore.jks

https.keyStorePassword This optional property specifies the password to access
the keystore. If you are not using HTTPS, comment this
property by prefixing it with a pound sign (#).

This property has no default value.

For example:

https.keyStorePassword=xxxxxx

https.trustStore This optional property specifies the location of the
truststore on the systemwhere you keep SSL certificates
of machines trusted in TSL connections. This is where
you keep the certificates of Document Consumers
and XDS Repositories. If you are not using HTTPS,
comment this property by prefixing it with a pound
sign (#) .

This property has no default value.

For example:

${com.emc.healthcare.home}/truststore.jks

https.trustStorePassword This optional property specifies the password to access
the truststore.If you are not using HTTPS, comment
this property by prefixing it with a pound sign (#).

This property has no default value.

https.trustStorePassword=xxxxxx

57

Post-Installation Configuration

Property Description

https.ciphersuites This optional property specifies the Cipher Suite used
to encrypt the session. If you are not using HTTPS,
comment this property by prefixing it with a pound
sign (#).

This property has no default value.

For example:

https.ciphersuites=TLS_RSA_WITH_AES_128_CBC

_SHA

https.server.keyAlias This property specifies the alias used for the server
certificate in the keystore. If not specified, the first key
read in the keystore is used.

For example:

https.server.keyAlias=myservicekey

https.server.privateKeyPassword This property specifies the private key password for
encrypting the data.

For example:

https.server.privateKeyPassword=xxxxxx

Note: You must configure this property if MMLP
secure port is enabled. The value of this property must
be the private key password.

Configuring the ATNA Properties

The following table shows the configuration of ATNA properties:

Property Description

audit.host This property specifies the name of the machine that
hosts the ATNA audit repository.

For example:

audit.host=localhost

audit.port This property specifies the port number of the ATNA
audit repository.

The default value is 514.

For example:

audit.port=514

58

Post-Installation Configuration

Property Description

audit.transport This property specifies the transport type for the ATNA
audit repository.

For example, BSD, TLS, or UDP.

The default value is UDP.

For example:

audit.transport=UDP

audit.sourceId This property specifies the source ID of the event.

This property has no default value.

For example:

audit.sourceId=${description}

Configuring the XUA Related Properties

The following table shows the configuration of XUA related properties:

Property Description

registry.xua.enabled This property specifies whether you want to enable
XUA for the XDS Registry Server.

The default value is false.

For example:

registry.xua.enabled=false

After enabling XUA, you must configure the xua
properties as described in Configuring the XUA
Properties, page 66.

59

Post-Installation Configuration

Configuring the PPIC Properties

The following table shows the configuration of PPIC properties:

Property Description

ppic.enabled This property specifies whether to enable the PPIC server
for user authorization. If enabled, the PPIC server checks
if the user has permission to view the documents that a
retrieve query returns.

The default value is false.

For example:

ppic.enabled=false

Note: You must configure the ppic.pdpServiceUrl
property, if you enable this property.

ppic.pdpServiceUrl This property specifies the URL for making PDP service
call for PPIC.

For example:

ppic.pdpServiceUrl=http://localhost:8080/ppic

/pdp

Configuring the Usage Report Properties

The following table shows the configuration of usage report properties:

Property Description

usagereport.username This property specifies the user name to log in to the
Usage Reporting web application.

For example:

usagereport.username=Administrator

The default username is Administrator

usagereport.password This property specifies the password you need to type
to log in to the Usage Reporting web application.

For example:

usagereport.password=password

The default password is password.

60

Post-Installation Configuration

Securing the Registry Properties File
The registry.properties file contains access information for the XDS Registry.

Secure the file as follows:
• Restrict access to the system where the XDS Registry Server and the registry.properties
file reside.

• Restrict access to the registry.properties file by providing the read/write access only to the
HIP Administrator. See www.wiki.apache.org/tomcat/FAQ/Password.

• Provide an encrypted Documentum user password. You can create an encrypted password during
Documentum installation or through the encryptPassword utility.

The EMC Documentum Content Server Administration and Configuration Guide provides the details
on password encryption.

Configuring the Registry Configuration XML
File
XDS Registry Server configuration file resides in the xDB healthcare database in the /registry
library. This file stores information about your Registry. The Registry configuration file resides in
two places. The Documentum xDB database stores the main Registry configuration file that the server
uses. Another version of the file resides on the file system to enable you to easily make changes
to the file.

The following table shows the configuration of registry-config.xml file:

Element Description

strictAboutCodes This property specifies how XDS Registry Server responds
when it receives register requests that do not contain valid
coded document metadata.

The server validates the coded metadata in the
request against the appropriate code set defined in
registry-config.xml.

If set to True, the server rejects the request. If set to
False, the server accepts the request even if it does not
recognize the code.

For example:

<strictAboutCodes>true</strictAboutCodes>

61

http://wiki.apache.org/tomcat/FAQ/Password

Post-Installation Configuration

Element Description

strictAboutPatientIds This property specifies how XDS Registry Server responds
when it receives register requests where the patient ID is
unknown or does not match the patient IDs already known
to the Registry.

The server validates the patient identifier in the request
against the patient identifiers received from the patient
identity feed source.

When set to True, the server rejects the register request.
When set to False, the server accepts the request.

For example:

<strictAboutPatientIds>true<

/strictAboutPatientIds>

codeClassification This property specifies all classification codes that the
Registry expects when receiving a register request.

This element contains the following two attributes:
• name: The coded metadata name.

• classificationScheme: The scheme value of the coded
metadata.

For example:

<codeClassification name="contentTypeCode"

classificationScheme="urn:uuid:aa543740-bdda

-424">

assingingAuthority This property specifies the assigning authority that
provides IDs for patients and submits patient identities to
the Registry. XDS Registry Server accepts the registration
requests only from the assigning authorities that are
defined here.

For example:

<assigningAuthority id="1.19.6.24.109.42.1.3"

/> <assigningAuthority id="1.20.7.25.90.22.7

.1"/>

62

Post-Installation Configuration

Element Description

Code This property specifies a code and is a sub-element of the
codeClassification element.

The element has the following three attributes:
• code: The code value.

• codeSystemName: The ID of the code system to which
the code belongs.

• displayName: The display name of the code.

For example:

<code code="Additional_Information"

codeSystemName="Connect-a-thon

associationDocumentation"

displayName="Additional Information"/>

Configuring the HIP PPIC Mapping Properties
File
The following table shows the configuration of hip ppic mapping.properties:

Property Description

documentEntry.patientId This property specifies the XDS Affinity Domain Patient
identifier.

For example:

documentEntry.patientId

=urn:oasis:names:tc:xacml:1.0:resource:patient

-id

documentEntry.typeCode This property specifies the code of the precise kind of
document (for example, Pulmonary History and Physical,
Discharge Summary, Ultrasound Report).

For example:

documentEntry.typeCode

=urn:oasis:names:tc:xacml:1.0:resource:record

-type

63

Post-Installation Configuration

Property Description

documentEntry.classCode This property specifies the high-level classification of
documents that indicates the kind of document (for
example, report, summary, note, consent.)

For example:

documentEntry.classCode=urn:ihe:iti:xds

-b:2007:document-entry:class-code

documentEntry
.healthcareFacilityCode

This property specifies the type of organizational setting of
the clinical encounter during which the documented act
occurred.

For example:

documentEntry.healthcareFacilityCode

=urn:ihe:iti:xds-b:2007:document

-entry:healthcare-facility-type-code

documentEntry.confidentialityCode This property specifies the level of confidentiality of the
document.

For example:

documentEntry.confidentialityCode

=urn:ihe:iti:xds-b:2007:confidentiality-code

documentEntry.homeCommunityId This property specifies the globally unique identifier for a
community.

For example:

documentEntry.homeCommunityId=urn:ihe:iti:xds

-b:2007:home-community-id

documentEntry.eventCode This property specifies the main clinical acts, such as a
colonoscopy or an appendectomy, being documented.

For example:

documentEntry.eventCode=urn:ihe:iti:xds

-b:2007:document-entry:event-code

documentEntry.practiceSettingCode This property specifies the clinical specialty where the act
that resulted in the document was performed (for example,
Family Practice, Laboratory, Radiology).

For example:

documentEntry.practiceSettingCode

=urn:ihe:iti:xds-b:2007:document

-entry:practice-setting-code

64

Post-Installation Configuration

Property Description

request.subjectId This property specifies the logical identifier of the user
performing the original service request.

For example:

request.subjectId=urn:oasis:names:tc:xacml:1

.0:subject:subject-id

request.subjectRole This property specifies the relevant user subject roles from
a locally defined Code-Set.

For example:

request.subjectRole=urn:oasis:names:tc:xacml:2

.0:subject:role

Configuring the Web Container Heap Memory
You have to configure the initial and maximum heap size settings for your J2EE Web Application
container according to the memory allocated to the server. You must also monitor the J2EE Web
Application container during testing to ensure that the settings are sufficient.

For Tomcat, EMC recommends:

Running the server as a service:
#Set initial heap size Xms and maximum heap size -Xmx JAVA_OPTS=”
-Xms512m –Xmx1024m –XX:MaxPermSize=512m”

Running the server as a standalone system:
Set “JAVA_OPTS”=-Xms256m –Xmx1g –XX:MaxPermSize=256m”

Configuring SSL for Tomcat
To configure Tomcat for SSL, add the paths for the keystores and truststores to the following file:
<Tomcat_install_dir>/conf/server.xml

For example:
<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"

SSLEnabled="true" maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="C:/Users/Administrator/.hip/keystore.jks"
keystorePass="changeit"
truststoreFile="C:/Users/Administrator/.hip/truststore.jks"
truststorePass="changeit"/>

65

Post-Installation Configuration

Configuring SSL for WebLogic
1. Log in to the WebLogic console.

For example,
http://server:7001/console

2. Ensure that SSL port enabled for each server.
You can find the setting SSL Listen Port Enabled under Configuration -> General for each server.
Enable this setting and make sure you use a correct and unused port.

3. For each server, change the KeyStore configuration as follows:

a. Go to Configuration -> Keystores.

b. In the Keystores section, click Change.

c. Type the values for the following fields as given in the example below:
Custom Identity Keystore=C:/Users/Administrator/.hip/keystore.jks
Custom Identity Keystore Type=JKS
Custom Identity Keystore Passphrase=changeit
Custom Trust keystore=C:/Users/Administrator/.hip/truststore.jks
Custom Trust Keystore Type=JKS
Custom Trust Keystore Passphrase=changeit

4. For each server, change the SSL configuration as follows:

a. Go to Configuration -> SSL.

b. Type the values for the following fields as given in the example below:
Private Key Alias=serverXX
Private Key Passphrase=changeit

5. Click Save.

Configuring the XUA Properties
The registry.properties file contains user-definable properties for XUA on the server. The HIP
XDS Repository Server and HIP XDS Registry Server share these configuration steps.

If you are using both the HIP XDS Repository and HIP XDS Registry Servers, you must enable
XUA separately for each component.

For the HIP XDS Registry Server, open registry.properties and set the registry.xua
.enabled property to true.

The default value is false.

After enabling XUA, you must configure the registry.properties file as mentioned in the
following topics:

• Configuring the XUA Policy, page 67

• Configuring the XUA SAML Attribute Values, page 67

66

Post-Installation Configuration

• Configuring the XUA Attribute Validation Property, page 68

• Configuring the Trusted Assertion Provider Properties, page 69

Configuring the XUA Policy

The ws-policy.xml file enables the Web Service security for the server. This file defines and
enables standard WS-Security features such as confidentiality (encryption), integrity (signing), and
authentication (SAML token) for Web Services.

A sample ws-policy.xml file resides in the following XDS Registry directory:
/webapps/registry/config/registry/

Copy the sample ws-policy.xml file to /webapps/registry/WEB-INF/classes/.

Alternatively, you can place this file in a different folder and define the file location in the server
classpath.

Configuring the XUA SAML Attribute Values

XDS Registry Server uses the XUA SAML attribute properties to validate SAML Security Token
attributes sent as part of a Registry request.

The following table shows the configuration of XUA SAML attribute values:

Property Description

xua.service.endpoint This property specifies the endpoint regular expression. XDS
Registry Server compares this value against the audience
restriction attribute provided in the token.

For example:

xua.service.endpoint=http://localhost:(\\d)*/hip

-webapps-xua-registry-1.6/

xua.crypto.provider This property specifies the crypto provider to be used for
encryption/decryption and signature validation.

For example:

xua.crypto.provider=org.apache.ws.security

.components.crypto.Merlin

xua.supported.authentication
.methods

This property provides a comma-separated list of authentication
methods supported by the XDS Registry.

For example:

xua.supported.authentication.methods

=urn:oasis:names:tc:SAML:2.0:ac:classes:X509

67

Post-Installation Configuration

Property Description

xua.purposeOfUse
.codeSystem

This property specifies the supported system for the
PurposeOfUseCode attribute.

For example:

xua.purposeOfUse.codeSystem=1.3.6.1.4.1.21367.3000

.4.1

xua.purposeOfUse.code.values This property provides a comma-separated list of purpose of use
codes supported by the XDS Registry.

For example:

xua.purposeOfUse.code.values=99-101,99-102

xua.role.codeSystem This property specifies the supported code system value for the
RoleCode attribute.

For example:

xua.role.codeSystem=2.16.840.1.113883.6.96

xua.role.code.values This property provides a comma-separated list of roles
supported by XDS Registry.

For example:

xua.role.code.values=112247003,22515006

xua.saml2.token.validator This property specifies the validator that validates the SAML
token in the request.

For example:

xua.saml2.token.validator=com.emc.Healthcare.xua

.validator.XuaValidator

Configuring the XUA Attribute Validation Property

The XUA attribute validation option can enable or disable some SAML attribute validations.

The following table shows the configuration of XUA attribute validation property:

Property Description

xua.authz.consent.option This property enables or disables the validation of the patient
consent attribute value of SAML token.

The default value is false.

For example:

xua.authz.consent.option=false

68

Post-Installation Configuration

Configuring the Trusted Assertion Provider Properties

This configuration is required if you enable XUA. These properties do not have any default value.

The following table shows the configuration of trusted assertion provider properties:

Property Description

xua.assertion.provider.trustStore This property points to a truststore file.

For example:

truststore.jks

xua.assertion.provider.trustStorePassword This property value is the truststore password.

69

Post-Installation Configuration

70

Chapter 7
Verifying the Installation

This chapter contains the following topics:

• Verifying the Installation Using Tomcat, page 71

• Verifying the Installation Using WebLogic, page 72

Verifying the Installation Using Tomcat
1. Ensure that the library dependencies are installed.

Installing Third-party Library Dependencies, page 34 provides information on installing library
dependencies.

2. Ensure that the .hip folder is available in C:\Users\<username> folder.
If you want to override the default location of the HIP configuration folder, override the
com.emc.Healthcare.com system property when you start the J2EE Web Application
container.
Use the following syntax: -
Dcom.emc.Healthcare.home=<hip_config_directory>

3. Start the xDB Server and ensure that the Healthcare database is operational.

4. Start XDS Registry Server using the normal start procedure for the J2EE web application
container. For example, start the server on Tomcat with the following command:
[root]# service Tomcat start

5. Check the log file for errors.
For example:
/usr/share/apache-Tomcat-7.0.25/logs/catalina.out

6. Open a web browser and type the following URL:
http://<host:port>/registry/services

The WSDL page appears, which indicates that the server installation is successful.

71

Verifying the Installation

Verifying the Installation Using WebLogic
1. Log in to WebLogic Admin console.

2. Ensure that the library dependencies are installed.
Installing Third-party Library Dependencies, page 34 provides information on installing library
dependencies.

3. Ensure that the .hip folder is available in C:\Users\<username> folder.
If the user does not have rights to access the C:\Users\<username> folder, perform the
following steps:
a. Create .hip folder in any other location.

b. Update the startWebLogic.cmd file located at ~\Oracle\Middleware\user
_projects\domains\domain{domain used for deployment} by adding the
following line:
set JAVA_OPTIONS=-Dcom.emc.healthcare.home=C:\.hip (“.hip location”)

4. Ensure that the HIP configuration properties files are present in the .hip folder.

5. Restart the system for the above changes to take effect.

6. Start the WebLogic server.

7. Deploy the registry WAR file.
Deploying the HIP Registry WAR File Using WebLogic, page 39 provides more details.

8. Open a web browser and type the following URL:
http://<host:port>/registry/services

The WSDL page appears, which indicates that the server installation is successful.

72

Chapter 8
Upgrade

This chapter contains the following topic:

Upgrading XDS Registry from 1.6B250714_update to 1.7, page 73

Upgrading XDS Registry from 1.6B250714
_update to 1.7
1. Delete previous version of Registry WAR file from the deployed location.

2. Build new Registry WAR from the hip-registry-1.7.0.zip file.

3. Go to the \registry\config\ folder in the WAR file.

4. Copy the registry folder containing the properties file to HIP_HOME directory.

5. Configure the properties file in the HIP_HOME directory.

6. Deploy the hip-registry-1.7.0.war file.

7. Verify the upgrade.

73

Upgrade

74

Chapter 9
Troubleshooting

This chapter contains the following topics:
• Log Settings, page 75

• Issues and Resolutions, page 76

Log Settings
A log is a chronological record of system activities that is sufficient to enable the reconstruction and
examination of the sequence of environments and activities surrounding or leading to an operation,
procedure, or event in a security-relevant transaction from inception to final results.

Log Description

The log file for the XDS Registry Server is located in <hip_config_directory>\logs.

For Apache Tomcat:

C:\Users\<username>\.hip\logs\registry.log

For Oracle WebLogic:

C:\Users\<username>\.hip\logs\registry.log

Log Management and Retrieval

XDS Registry Server uses the Simple Logging Facade for Java (SLF4J) combined with a logback
logging provider implementation.

The default log level setting is INFO.

You can increase the trace messages by setting the log level to DEBUG in

<tomcat installation directory>\webapps\registry\WEB-INF\classes\logback
.xml file.

For example:

75

Troubleshooting

<--!Set to DEBUG to see detailed HIP message information -->
<logger name="com.emc.healthcare">
<level value="DEBUG"/>
</logger>

Issues and Resolutions
This topic describes the following XDS Registry errors and their solutions:

• Context Initialization Failing when Deploying the Server WAR Files, page 76

• Cannot Connect to the XDS Registry Server, page 77

• Cannot Access the xDB Server, page 78

• Java Errors at Startup, page 79

• XUA Policy File Error, page 79

• servicesstore.jks File Not Found Error, page 80

• Must Understand Headers Error, page 80

• java.lang.OutOfMemoryError: PermGen space error, page 81

• Required Header Not Present Error, page 82

• Unable to Connect to Documentum xDB, page 82

• o.s.web.context.ContextLoader - Context Initialization Failed, page 83

• CannotLoadBeanClassException: Error loading class, page 84

• Apache Camel Shutting Down, page 85

Context Initialization Failing when Deploying the Server
WAR Files
Issue with HIP Configuration

Problem

When you try to install the Registry WAR files, you get an error message as follows:
o.s.web.context.ContextLoader - Context initialization failed
org.springframework.beans.factory.BeanInitializationException:
Could not load properties; nested exception is java.io.FileNotFoundException:
C:\Users\Administrator\.hip\registry\registry.properties

(The system cannot find the path specified)
at org.springframework.beans.factory.config.PropertyResourceConfigurer.postProcessBeanFactory
(PropertyResourceConfigurer.java:87) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

Cause
The .hip folder is not available in <user home>.

76

Troubleshooting

Resolution
Ensure that the HIP configuration properties are available in the %HIP HOME%.

Creating the HIP Configuration Directory, page 37 and Deploying the Property Files in the HIP
Configuration Directory, page 38 provide more details on HIP configuration.

Issue with Camel Jar Files

Problem

When you try to install the Registry WAR files, you get an error message as follows:
10:57:01.592 [localhost-startStop-1] INFO o.s.b.f.xml.XmlBeanDefinitionReader
- Loading XML bean definitions from class path resource [META-INF/spring/xua-context.xml]
10:57:01.895 [localhost-startStop-1] ERROR o.s.web.context.ContextLoader -
Context initialization failed
org.springframework.beans.factory.parsing.BeanDefinitionParsingException:
Configuration problem: Unable to locate Spring NamespaceHandler for XML schema namespace
[http://camel.apache.org/schema/spring] Offending resource: ServletContext resource
[/WEB-INF/spring/context.xml]
at org.springframework.beans.factory.parsing.FailFastProblemReporter.error
(FailFastProblemReporter.java:68) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

Cause

Camel jar files are not added to the tomcat classpath.

Resolution

Install Camel Library Dependencies.

Installing Third-party Library Dependencies, page 34 provides the steps to install camel library
dependencies.

Cannot Connect to the XDS Registry Server

Problem

You are unable to connect to the XDS Registry Server.

Cause

You are using incorrect URL or the Registry installation is incomplete.

77

Troubleshooting

Resolution

• Ensure that the endpoint (url:port) is correct.

You can also validate the URL by accessing the XDS Registry Server WSDL.

http://localhost:<port>/registry/services.

If the WSDL loads then the XDS Registry Server is up.

• Ensure that the server is up and running by performing the steps in Chapter 7, Verifying the
Installation.

• Ensure that the TLS certificates are valid and accessible.

• If you are using XUA, ensure that the XUA configurations are correct.

Configuring the XUA Related Properties, page 59 provides details on XUA configuration.

Cannot Access the xDB Server

Problem

You get the following error message when trying to connect to xDB:
o.s.web.context.ContextLoader - Context initialization failed
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'com.emc.healthcare.commons.xdb.ManagedXhiveDriver'
defined in class path resource [META-INF/spring/hip-commons-xdb-beans.xml]:
Invocation of init method failed; nested exception is
com.xhive.error.XhiveException: CONNECTION_FAILED:
Connect to server at 127.0.0.1:1235 failed, Original message:
Connection refused: connect

Cause

Incorrect configuration of xDB Server properties.

Resolution

• Ensure that the xDB Server is running.

• Verify that the xDB bootstrap file name is correct.

• Ensure that the xDB username and password are correct.

Configuring the Documentum xDB Properties, page 44 provides details on xDB configuration.

78

Troubleshooting

Java Errors at Startup

Problem

You get an error message as follows in the startup.
java.lang.NoClassDefFoundError: Lca/uhn/hl7v2/parser/Parser;
at java.lang.Class.getDeclaredFields0(Native Method)
at java.lang.Class.privateGetDeclaredFields(Unknown Source)
at java.lang.Class.getDeclaredFields(Unknown Source)
at org.codehaus.groovy.vmplugin.v5.Java5.configureClassNode(Java5.java:313)

Cause

The server cannot find the HAPI jar files because they were not deployed or were deployed incorrectly.

Resolution

Deploy the HAPI jar files as described in Deploying the HIP Registry WAR File on Windows, page 39.

XUA Policy File Error

Problem

You get the following error in the log file during initialization:
Context initialization failed
org.apache.camel.RuntimeCamelException:
org.apache.cxf.ws.policy.PolicyException: Policy reference
classpath:ws-policy.xml could not be resolved.

Cause

XDS Registry Server cannot find the ws-policy.xml file defined in the classpath.

Resolution

Ensure that you copy the sample ws-policy.xml file from
/webapps/registry/config/registry/

and place it in

79

Troubleshooting

/webapps/registry/WEB-INF/classes/

Alternatively, you can place this file in a different folder and define the file location in the server
classpath.

servicesstore.jks File Not Found Error

Problem

You get an error message as follows in the log file:
java.io.FileNotFoundException: certificates\servicestore.jks (The system cannot
find the path specified)

Cause

XDS Registry Server is unable to find the keystore file specified in the serviceKeystore
.properties file.

If you are using HTTPS to connect to the XDS Registry, the appropriate TLS certificates (keystore.jks,
truststore.jks) must be located in the HIP_HOME directory.

Resolution

• Copy the keystore file to the location specified in serviceKeystore.properties.

• Verify if SSL and the paths for the keystores/truststores are configured in tomcat\conf\server
.xml as follows:
<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="C:/Users/Administrator/.hip/keystore.jks"
keystorePass="changeit"
truststoreFile="C:/Users/Administrator/.hip/truststore.jks"
truststorePass="changeit"/>

Must Understand Headers Error

Problem

XDS Registry Server writes the following error to the log file:
WARN o.a.cxf.phase.PhaseInterceptorChain - Interceptor for {urn:ihe:iti:xds-b:2007}

80

Troubleshooting

DocumentRegistry_Service#{urn:ihe:iti:xds-b:2007}
DocumentRegistry_RegisterDocumentSet-b has thrown exception, unwinding now
org.apache.cxf.binding.soap.SoapFault: MustUnderstand headers:
[{http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd}Security]are not understood

Cause

An XUA enabled XDS Registry Server received a request without a security header.

Resolution

With XUA enabled on the server, all requests must contain a security header. Either disable XUA on
the server or instruct the sending application to send requests with security headers.

To disable XUA, open the registry.properties file and set the registry.xua.enabled
property to false.

java.lang.OutOfMemoryError: PermGen space error

Problem

You get java.lang.OutOfMemoryError:PermGen space error while verifying the deployment
of verifying the deployment of HIP Registry.

Cause

The permanent generation heap is full.

Resolution

Increase the Permgen space.

For Tomcat:
Set JAVA_OPTS=-Xms256m –Xmx512m -XX:PermSize=256m -XX:MaxPermSize=512m

For WebLogic:

Replace the following lines in the setDomainEnv.cmd files located at C:\Oracle\Middleware
\user_projects\domains\base_domain\bin

Replace:
set WLS_MEM_ARGS_64BIT="-Xms256m -Xmx512m"

81

Troubleshooting

set WLS_MEM_ARGS_32BIT="-Xms256m -Xmx512m"

With:
set WLS_MEM_ARGS_64BIT=-Xms256m –Xmx512m -XX:MaxPermSize=512m
set WLS_MEM_ARGS_32BIT=-Xms256m –Xmx512m -XX:MaxPermSize=512m

Required Header Not Present Error

Problem

XDS Registry Server writes the following error to the log file:
org.apache.cxf.interceptor.Fault: A required header representing a Message Addressing
Property is not present

Cause

An XUA enabled XDS Registry Server received a request without a security header.

Resolution

If XUA is enabled on the server, all requests must contain a security header. You must either disable
XUA on the server or instruct the sending application to send requests with security headers.

To disable XUA, open the registry.properties file and set the registry.xua.enabled
property to false.

Unable to Connect to Documentum xDB

Problem

XDS Registry Server is unable to connect to the xDB healthcare database and you get the following
error message in the log file:
ERROR Context initialization failed
org.springframework.beans.factory.BeanCreationException: Error creating bean
with name 'org.apache.cxf.bus.spring.BusApplicationListener' defined in class
path resource [META-INF/cxf/cxf.xml]: Initialization of bean failed; nested
exception is org.springframework.beans.factory.BeanCreationException: Error
creating bean with name 'camelContext': Invocation of init method failed; nested
exception is org.apache.camel.RuntimeCamelException:
org.springframework.beans.factory.BeanCreationException: Error creating bean with
name 'com.emc.healthcare.xds.registry.DirectRouteBuilder' defined in class path

82

Troubleshooting

resource [META-INF/spring/hip-xds-registry-commons-beans.xml]: Cannot create inner bean

Cause

XDS Registry Server is unable to connect to the xDB healthcare database because:
• The Documentum xDB is not currently running

• The Documentum xDB database and log in information are incorrect

Resolution

• Connect to the Documentum xDB Admin Client and access the healthcare database to verify that
Documentum xDB is running and accessible.

• Ensure that registry.properties file contains correct Documentum xDB database names
and user names.

The topic Configuring the Documentum xDB Properties, page 44 provides details on xDB
configuration.

o.s.web.context.ContextLoader - Context Initialization
Failed

Problem

You get an error message as follows during context initialization:
09:18:28.719 [http-bio-80-exec-17] ERROR
o.s.web.context.ContextLoader - Context initialization failed
org.apache.camel.RuntimeCamelException:
org.apache.camel.FailedToCreateRouteException: Failed to create
route xds-iti8://0.0.0.0:9183: Route(xds-iti8://0.0.0.0:9183)
[[From[xds-iti8://0.0.0.0:9183... because of Failed to
resolve endpoint: xds-iti8://0.0.0.0:9183?clientAuth=MUST&codec=
%23iti8Hl7Codec&secure=true&sslContext=%23sslContext due to:
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'sslContextFactory' defined
in class path resource [META-INF/spring/hip-xds-registry-
commons-beans.xml]: Cannot resolve reference to bean '
keyStore' while setting bean property 'keyManagerFactoryKeyStore';
nested exception is
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'keyStoreFactory' defined in
class path resource [META-INF/spring/hip-xds-registry-commons-beans.xml]:
Error setting property values; nested exception is
org.springframework.beans.PropertyBatchUpdateException;
nested PropertyAccessExceptions (1) are:
PropertyAccessException 1:
org.springframework.beans.MethodInvocationException:
Property 'dataFile' threw exception;

83

Troubleshooting

nested exception is java.lang.NullPointerException
at org.apache.camel.util.ObjectHelper.

wrapRuntimeCamelException(ObjectHelper.java:1344)
~[camel-core-2.12.1.jar:2.12.1]

at org.apache.camel.spring.SpringCamelContext.
onApplicationEvent(SpringCamelContext.java:120)
~[camel-spring-2.12.1.jar:2.12.1]

Cause

You have not configured the HTTPS parameters that must be configured if you are using secure
MLLP port.

Resolution

If you are trying to use secure MLLP port, you must include following optional parameters in the
registry.properties file.

For example, replace the following values according to your setup:

https.keyStore=${com.emc.healthcare.home}/keystore.jks

https.keyStorePassword=changeit

https.trustStore=${com.emc.healthcare.home}/truststore.jks

https.trustStorePassword=changeit

https.ciphersuites=TLS_RSA_WITH_AES_128_CBC_SHA

https.server.privateKeyPassword=changeit

The https.server.privateKeyPassword is mandatory for MLLP secure port.

CannotLoadBeanClassException: Error loading class

Problem

You get an error message as follows:
Caused by: org.springframework.beans.factory.
CannotLoadBeanClassException: Error loading class
[com.emc.healthcare.xua.hanlder.XuaCallbackHandler]
for bean with name 'callbackHanlder' defined in
class path resource [META-INF/spring/xua-context.xml]:
problem with class file or dependent class; nested
exception is java.lang.UnsupportedClassVersionError:
com/emc/healthcare/xua/hanlder/XuaCallbackHandler :
Unsupported major.minor version 51.0 (unable to load
class com.emc.healthcare.xua.hanlder.XuaCallbackHandler)

at org.springframework.beans.factory.

84

Troubleshooting

support.AbstractBeanFactory.resolveBeanClass
(AbstractBeanFactory.java:1278) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.factory.
support.AbstractAutowireCapableBeanFactory.createBean
(AbstractAutowireCapableBeanFactory.java:435)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory$1.getObject
(AbstractBeanFactory.java:295) ~
[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.DefaultSingletonBeanRegistry.
getSingleton(DefaultSingletonBeanRegistry.java:223)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory.doGetBean
(AbstractBeanFactory.java:292)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory.getBean
(AbstractBeanFactory.java:194)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.BeanDefinitionValueResolver.
resolveReference(BeanDefinitionValueResolver.java:323)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

... 25 common frames omitted

Cause

You are using JDK 1.6 for the Application server.

Resolution

HIP servers require JDK 1.7. Use the JDK 1.7 version.

Apache Camel Shutting Down

Problem

You get an error message as follows:
09:27:55.568 [http-bio-80-exec-21]
INFO o.a.camel.spring.SpringCamelContext
- Apache Camel 2.12.1 (CamelContext: camelContext)
is shutdown in 0.109 seconds
09:27:55.577 [http-bio-80-exec-21]
ERROR o.s.web.context.ContextLoader -
Context initialization failed
org.apache.camel.RuntimeCamelException:
java.net.BindException: Address already in use: bind

at org.apache.camel.util.

85

Troubleshooting

ObjectHelper.wrapRuntimeCamelException
(ObjectHelper.java:1344) ~[camel-core-2.12.1.jar:2.12.1]

at org.apache.camel.spring.
SpringCamelContext.onApplicationEvent
(SpringCamelContext.java:120) ~[camel-spring-2.12.1.jar:2.12.1]

at org.apache.camel.spring.
CamelContextFactoryBean.onApplicationEvent
(CamelContextFactoryBean.java:301) ~[camel-spring-2.12.1.jar:2.12.1]

at org.springframework.context.
event.SimpleApplicationEventMulticaster.
multicastEvent(SimpleApplicationEventMulticaster.java:96)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.context.
support.AbstractApplicationContext.publishEvent
(AbstractApplicationContext.java:334)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.
context.support.AbstractApplicationContext.
finishRefresh(AbstractApplicationContext.
java:948) ~[spring-context-3.2.4.RELEASE.
jar:3.2.4.RELEASE]

at org.springframework.
context.support.AbstractApplicationContext.
refresh(AbstractApplicationContext.java:482)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.web.
context.ContextLoader.
configureAndRefreshWebApplicationContext(ContextLoader.java:389)
~[spring-web-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.web.context.
ContextLoader.initWebApplicationContext
(ContextLoader.java:294)
~[spring-web-3.2.4.RELEASE.jar:3.2.4.RELEASE]

Cause

Some of the MLLP ports used in HIP properties file are being used by some other application.

Resolution

Change the MLLP ports to the ports that are not used by other applications.

86

Appendix A

Sample Configuration Files

This appendix contains the following sample files:
• registry.properties, page 87

• registry-config.xml, page 92

• hip-ppic-mapping.properties, page 93

registry.properties
User settable properties are listed in this file.
The order of property evaluation is as follows:
1: ${com.emc.healthcare.home}/registry/registry.properties is consulted first
2: System.properties is consulted second.
#
Property values are set in the order they are encountered. If the
same property is defined in multiple locations, the final setter takes precedence
#
All settable properties for this server are enumerated in this file.
If a property defined and commented out this documents its default value.
#
#

The description property is used to contain a description of this
server instance for display purposes
NO DEFAULT
description=XDS Registry

------------------------- xDB Related Parameters -------------------------
#
The properties below that do not have values, have no defaults. The
three properties without defaults listed below must be configured or
the registry server will fail to start.
#
The xdb.libraryPath has no default however it has been set to
"/registry" in this property file so that the end user has one less configuration
decision to make.

xdb.libraryPath=/registry

xdb.cachePages=0
xdb.maximumPoolSize=20

#---
The following set of 5 parameters are used to define the primary READ XDB node.
These settings are mandatory.

87

Sample Configuration Files

#---
xdb.readNode.bootstrapFileName=xhive://localhost:1235
xdb.readNode.databaseName=
xdb.readNode.userName=
xdb.readNode.password=
xdb.readNode.keystore property is required if HIP encrypted password is configured

DEFAULT=${com.emc.healthcare.home}/registry/hip.keystore
xdb.readNode.keystore=${com.emc.healthcare.home}/registry/hip.keystore
#
The same applies to xdb.writeNode.keystore, xdb.backup.readNode.keystore
and xdb.backup.writeNode.keystore.

#--
The following (optional) set of 5 parameters is used to define
the primary WRITE XDB node.
For Single node deployment, set these 4 values to blank
#--
xdb.writeNode.bootstrapFileName=
xdb.writeNode.databaseName=
xdb.writeNode.userName=
xdb.writeNode.password=
#xdb.writeNode.keystore= is required if HIP encrypted password is configured

#--
The following (optional) parameters are comma separated list for
Backup READ XDB nodes setup.
#--
xdb.backup.readNode.bootstrapFileName=
xdb.backup.readNode.databaseName=
xdb.backup.readNode.userName=
xdb.backup.readNode.password=
xdb.backup.readNode.keystore= is required if HIP encrypted password is
configured

#--
The following (optional) parameters are comma separated list for
Backup WRITE XDB nodes setup.
#--
xdb.backup.writeNode.bootstrapFileName=
xdb.backup.writeNode.databaseName=
xdb.backup.writeNode.userName=
xdb.backup.writeNode.password=
#xdb.backup.writeNode.keystore= is required if HIP encrypted password
is configured

---------------------- Registry Configuration Parameters--------------------
Indicates whether the xDB-based config document should be automatically
updated when a change
is detected to the copy on the file system.
DEFAULT=false
config.autoImport=false

The path on the file system where the registry configuration document
is stored. The final name portion of this document will be preserved in the
xDB library. Using the defaults below, this means that the library path for
this document will translate to:
${xdb.libraryPath}/registry-config.xml
Which translates to: /registry/registry-config.xml
#
Regardless of the value of the config.autoImport flag, the registry
will attempt to load teh document into xDB from the disk file copy if the
library path for the document does not yet exist in xDB. After first
load the value of the autoImport property is honored.
#

88

Sample Configuration Files

#
DEFAULT=${com.emc.healthcare.home}/registry-config.xml
config.document=${com.emc.healthcare.home}/registry/registry-config.xml

-------------- Minimal Lower Layer Protocol (MLLP) Parameters ---------------#
The MLLP parameters are used control the ports upon which the Registry
server listens for ITI-8 Patient Identity feeds. The mllp.port and mllp.
securePort both default to "0". When the port is set to "0" the Registry
server will not open a listening port.
#
An optional unsecure port that will be used to listen for
ITI-8 'Patient Identity Feed' messages.
DEFAULT=0
mllp.port=0

An optional secure port that will be used to listen for ITI-8
'Patient Identity Feed' messages.
If this property is set to a non zero value, the https properties
must also be set.
DEFAULT=0
mllp.securePort=0

An optional specification that allows users to override the default
MLLP RouteBuilder script provided with the product. The actual location
of this within the classpath is within one of the Jar files shipped
with the product. A copy of this script is available inside this
war package. Copies of the source used to define the routes have been
copied into the ROUTES directory of this war.
#
#
When tis property is not set, the default is used, which loads the
MllpRouteBuilder.groovy source from a resoruce on the class path. There
are two other useful ways you could set this property.
#
1: Load the copy that is shipped with the war file. The syntax for
doing this is shown below. Thie file name is path relative to the
exploded war directory
#
mllp.routeBuilderScriptSource=ROUTES/MllpRouteBuilder.groovy
#
2: Load a copy of the source from the file system. Note that when
you load this file from the file system you must use the absolute
path of the file formatted in a way appropriate for your operating system.
#
mllp.routeBuilderScriptSource=file:/absolute/path/myMllp.groovy
#
Or for Windows:
#
#
mllp.routeBuilderScriptSource=file:C:/absolute/path/myMllp.groovy
#
This is equivilant to
#
mllp.routeBuilderScriptSource=file:C:\\absolute\\path\\myMllp.groovy
#
In Windows, the first "\" character is treated as an escape character
by the properties loader. Windows does allow the use of the
"/" character as a path separator.
#
DEFAULT=classpath:com/emc/healthcare/xds/registry/commons/MllpRouteBuilder.groovy
mllp.routeBuilderScriptSource=classpath:com/emc/healthcare/xds/registry/commons/MllpRouteBuilder.groovy

#----------------------------- Soap Route Builder -------------------------------#

89

Sample Configuration Files

An optional specification that allows users to override the default
Soap RouteBuilder script provided with the product. The actual location of
this within the classpath is within one of the Jar files shipped with the
product. See description for soap.routeBuilderScriptSource above
for details on how this can be used.
#
DEFAULT=classpath:com/emc/healthcare/xds/registry/commons/SoapRouteBuilder.groovy
soap.routeBuilderScriptSource=classpath:com/emc/healthcare/xds/registry/commons/SoapRouteBuilder.groovy
#
Optional flags to disable incoming message validation. These flags
may be used in special situations to disable incoming message validation.
These flags are intended mainly for Connectathon testing in case a testing
partner does not pass message validation. Messages that do not pass
validation have a high likelyhood of failing for other reasons
later in the processing cycle. These flags should always be set
to "true" in production scenarios.
#
DEFAULT=true
registry.iti18.requestValidator.enabled=true
DEFAULT=true
registry.iti42.requestValidator.enabled=true
DEFAULT=true
registry.iti51.requestValidator.enabled=true
DEFAULT=true
registry.iti61.requestValidator.enabled=true
DEFAULT=true
registry.iti62.requestValidator.enabled=true
#----- Enables Additional IHE Endpoint for trusted Hosts Only ---------------#
registry.trusted.hosts.enabled=false
--------------------------- HTTPS Related Properties --------------------
#
The following properites must be configured for secure communication
These are used for keystore and truststore configuration.
Keystore configurations (first 4 https configurations) are required
if XUA is enabled
#
The final property in this section, https.ciphersuites is used
to configure the suite used, a suitable value for this parameter is:
TLS_RSA_WITH_AES_128_CBC_SHA
#
The properties in this section have NO DEFAULTS

https.keyStore
https.keyStorePassword
https.server.keyAlias
https.server.privateKeyPassword
https.trustStore
https.trustStorePassword
https.ciphersuites

--------------------- ATNA Audit Related Parameters ---------------------

Host name for the ATNA audit repository
DEFAULT=localhost
audit.host=localhost

Port number for the ATNA audit repository.
DEFAULT=514
audit.port=514

Transport type for the ATNA audit repository (BSD, TLS, UDP)
DEFAULT=UDP
audit.transport=UDP

90

Sample Configuration Files

An optional source identifier for ATNA audit messages.
NO DEFAULT
audit.sourceId=${description}

----------------------- XUA Related Properties ---------------------------#

flag to enable/disable Cross Enterprise User Assertion Validation
Default value is false
registry.xua.enabled=false

The following properties are not required to be configured
if XUA validation is disabled

The validator to validate the SAML token in the request.
The default value is com.emc.healthcare.xua.validator.XuaValidator
xua.saml2.token.validator=com.emc.healthcare.xua.validator.XuaValidator

The Crypto provider to be used for encryption/decryption and signature
validation.
The default value is org.apache.ws.security.components.crypto.Merlin
xua.crypto.provider=org.apache.ws.security.components.crypto.Merlin

The service endpoint regular expression to match against service endpoint
attribute provided in the token.
If not configured, the service endpoint provided in the token is not validated
xua.service.endpoint

The list of "," separated authentication methods supported by the XDS Registry.
if not configured, Authentication method provided in the token is not validated
xua.supported.authentication.methods

The code system and the list of "," separated code values supported for
the PurposeOfUseCode attribute provided in the token.
if not configured, PurposeOfUseCode value provided in the token is not validated
xua.purposeOfUse.codeSystem
xua.purposeOfUse.code.values

The code system and the list of "," separated code values supported
for the Role attribute provided in the token.
if not configured, Role value provided in the token is not validated
xua.role.codeSystem
xua.role.code.values

The property to enable/disable Authorization Consent validation
Default value is false
xua.authz.consent.option=false

Configuration of trusted assertion providers' certificates.
It is a required configuration if XUA is enabled and has no default value.
xua.assertion.provider.trustStore
xua.assertion.provider.trustStorePassword

------------------------- PPIC Related Properties -----------------------#

flag to enable/disable PPIC
Default value is false
ppic.enabled=false

#The URL for making pdp service call for PPIC.
Example: repository.pdpServiceURL=http://localhost:8080/ppic/pdp
ppic.pdpServiceUrl=http://localhost/ppic/pdp
#----------------------Usage Report properties----------------------------#

91

Sample Configuration Files

User name to login to usage report User Interface
Default is Administrator
#usagereport.username=

User password to login to usage report User Interface
Default is password
#usagereport.password=

registry-config.xml
This sample has been edited for length. A full length sample resides in the /registry folder in
your HIP Configuration Directory.
<?xml version="1.0" encoding="utf-8"?>
<registryConfig

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.emc.com/healthcare/xds/registry/commons/config"
xsi:schemaLocation="http://www.emc.com/healthcare/xds/registry/commons/
config registry-config.xsd">

<strictAboutCodes>true</strictAboutCodes>
<strictAboutPatientIds>true</strictAboutPatientIds>
<codeClassification name="contentTypeCode" classificationScheme=
"urn:uuid:aa543740-bdda-424e-8c96-df4873be8500">
<code code="Communication" displayName="Communication"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Evaluation and management" displayName="Evaluation and management"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Conference" displayName="Conference" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Case conference" displayName="Case conference"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Consult" displayName="Consult" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Confirmatory consultation" displayName="Confirmatory consultation"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Counseling" displayName="Counseling" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Group counseling" displayName="Group counseling"

codeSystemName="Connect-a-thon contentTypeCodes"/>
</codeClassification>
<codeClassification name="associationDocumentation"
classificationScheme="urn:uuid:abd807a3-4432-4053-87b4-fd82c643d1f3">
<code code="Additional_Information" codeSystemName=
"Connect-a-thon associationDocumentation" displayName=
"Additional Information"/>

<code code="Corrected_Information" codeSystemName=
"Connect-a-thon associationDocumentation" displayName="Corrected Information"/>
</codeClassification>

<assigningAuthority id="1.19.6.24.109.42.1.3"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2005.3.7"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2008.2.1"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2009.1.2.300"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2010.1.2.300"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.1000"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.2000"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.3000"/>

</registryConfig>

92

Sample Configuration Files

hip-ppic-mapping.properties
documentEntry.patientId=urn:ihe:iti:xds-b:2007:patient-id
documentEntry.typeCode=urn:ihe:iti:xds-b:2007:document-entry:type-code
documentEntry.classCode=urn:ihe:iti:xds-b:2007:document-entry:class-code
documentEntry.healthcareFacilityCode=urn:ihe:iti:xds-b:2007:document-entry:healthcare-facility-type-code
documentEntry.confidentialityCode=urn:ihe:iti:xds-b:2007:confidentiality-code
documentEntry.homeCommunityId=urn:ihe:iti:xds-b:2007:home-community-id
documentEntry.eventCode=urn:ihe:iti:xds-b:2007:document-entry:event-code
documentEntry.practiceSettingCode=urn:ihe:iti:xds-b:2007:document-entry:practice-setting-code

request.subjectId=urn:oasis:names:tc:xacml:1.0:subject:subject-id
request.subjectRole=urn:oasis:names:tc:xacml:2.0:subject:role

93

Sample Configuration Files

94

Index

A
about XDS Registry server, 9
access control settings, 25
ATNA properties, 58
authentication configuration, 25

C
communication security settings, 29
configuring registry.properties, 43
creating hip directory, 37
Cross-Enterprise User Assertion, 66
customization, 21

D
data backup and recovery, 22
data security settings

encryption of data at rest, 30
deploying property files, 38
deploying registry war, 39
deploying war file using tomcat, 39
deploying war file using Weblogic, 39

E
enabling remote xDB support, 41
endpoints, 14

H
HADR properties, 45
high availability and disaster recovery, 22
HTTPS properties, 56

I
installing xDB, 34

L
load balancing and scalability, 21

log description, 75
log management and retrieval, 75
log settings, 75

M
merge patient identity, 18
MLLP properties, 53

N
network encryption, 29
new patient identity notification, 18

O
obtaining camel jars, 35
obtaining jars, 35
obtaining library dependency, 34
obtaining xDB jars, 35

P
patient identity feed, 17
patient privacy enforcement

user authorization, 27
port usage, 29
post-installation configuration, 43
PPIC properties, 60
pre-installation tasks, 33
provide and register document set

transaction, 12

R
register document set transaction, 12
registry configuration properties, 52
registry overview, 9
registry server architecture, 10
registry server installation, 33
registry stored query request, 13

95

Index

request and response validator
properties, 55

retrieve document set transaction, 13

S
sample files, 87
secure deployment settings, 30
security configuration, 25
SOAP routes properties, 54
SSL for J2EE web container, 65
SSL for WebLogic, 66

T
troubleshooting, 75
trusted assertion provider options, 69
trusted node authentication, 25

U
upgrade, 73

usage report properties, 60
usage reporting, 22
user authentication

authentication configuration, 26

V
verifying installation using tomcat, 71
verifying installation using WebLogic, 72
verifying the installation, 71

W
web container Heap Memory, 65
working of XDS Registry server, 10

X
xDB properties, 44
XUA policy, 67
XUA properties, 59
XUA SAML attribute values, 67

96

	Installation Guide
	Revision History
	About XDS Registry Server
	Overview
	Components
	Architecture
	Workflow
	Endpoints

	Features
	ITI-8 Patient Identity Notifications
	New Patient Identity Notification
	Merge Patient Identities Notification

	XDS Registry Transactions
	Customization
	Security
	Business Continuance
	Load Balancing and Scalability
	Data Backup and Recovery
	High Availability and Disaster Recovery

	Usage Reporting

	Security Configuration
	Access Control Settings
	Authentication Configuration
	Trusted Node Authentication
	User Authentication

	Trusted Host Access Configuration
	Patient Privacy Policy Enforcement

	Communication Security Settings
	Port Usage
	Network Encryption

	Data Security Settings
	Encryption of Data at Rest

	Secure Deployment Settings

	Before You Install
	Installation
	Pre-Installation Tasks
	Installing Documentum xDB Healthcare Database
	Installing Third-party Library Dependencies
	Obtaining the Library Dependencies
	Installing the Library Dependencies

	Creating the HIP Configuration Directory
	Deploying the Property Files in the HIP Configuration Directory
	Deploying the HIP Registry WAR File on Windows
	Deploying the HIP Registry WAR File Using Tomcat
	Deploying the HIP Registry WAR File Using WebLogic

	Deploying the HIP Registry WAR File in Linux
	Enabling Remote xDB Instance Support

	Post-Installation Configuration
	Configuring Registry Properties File
	Configuring the Registry Property
	Configuring the Documentum xDB Properties
	Configuring the HADR Properties

	Configuring the Registry Configuration File Properties
	Configuring the MLLP Parameters
	Configuring the Custom SOAP Routes Properties
	Configuring the Request and Response Validator Properties
	Configuring the IHE Endpoint for Trusted Hosts
	Configuring the HTTPS Properties
	Configuring the ATNA Properties
	Configuring the XUA Related Properties
	Configuring the PPIC Properties
	Configuring the Usage Report Properties

	Securing the Registry Properties File
	Configuring the Registry Configuration XML File
	Configuring the HIP PPIC Mapping Properties File
	Configuring the Web Container Heap Memory
	Configuring SSL for Tomcat
	Configuring SSL for WebLogic
	Configuring the XUA Properties
	Configuring the XUA Policy
	Configuring the XUA SAML Attribute Values
	Configuring the XUA Attribute Validation Property
	Configuring the Trusted Assertion Provider Properties

	Verifying the Installation
	Verifying the Installation Using Tomcat
	Verifying the Installation Using WebLogic

	Upgrade
	Upgrading XDS Registry from 1.6B250714_update to 1.7

	Troubleshooting
	Log Settings
	Log Description
	Log Management and Retrieval

	Issues and Resolutions
	Context Initialization Failing when Deploying the Server WAR Files
	Issue with HIP Configuration
	Problem
	Cause
	Resolution

	Issue with Camel Jar Files
	Problem
	Cause
	Resolution

	Cannot Connect to the XDS Registry Server
	Problem
	Cause
	Resolution

	Cannot Access the xDB Server
	Problem
	Cause
	Resolution

	Java Errors at Startup
	Problem
	Cause
	Resolution

	XUA Policy File Error
	Problem
	Cause
	Resolution

	servicesstore.jks File Not Found Error
	Problem
	Cause
	Resolution

	Must Understand Headers Error
	Problem
	Cause
	Resolution

	java.lang.OutOfMemoryError: PermGen space error
	Problem
	Cause
	Resolution

	Required Header Not Present Error
	Problem
	Cause
	Resolution

	Unable to Connect to Documentum xDB
	Problem
	Cause
	Resolution

	o.s.web.context.ContextLoader - Context Initialization Failed
	Problem
	Cause
	Resolution

	CannotLoadBeanClassException: Error loading class
	Problem
	Cause
	Resolution

	Apache Camel Shutting Down
	Problem
	Cause
	Resolution

	Appendix
	Sample Configuration Files
	registry.properties
	registry-config.xml
	hip-ppic-mapping.properties

	Index

