

[Back to Search Results](#)

Host Targeted Therapy for Drug Resistant *Salmonella* and *Francisella* infection

[Description](#)[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)[Share](#)

Description

Abstract Text

Abstract The formation of antibacterial drug resistance is a public health crisis and has led to increasing healthcare costs and even death. Drug resistance can occur when an antibiotic directly kills a pathogen or prevents its growth because of selective pressure. This phenomena has generated various multi-drug resistant bacterial species that are a global public health concern. Most antibacterial therapeutics target the pathogen in an attempt to clear infection. However, more recently the concept of antibacterial therapeutics that target host specific pathways has been developed. These pathways can potentially prevent infection, virulence, replication, and proliferation. Therapies that target these pathways could potentially treat traditional antibiotic resistant strains. Additionally, targeting the host instead of the pathogen could prevent the development of drug resistance because the therapy could activate pathways that fight resistance and activate the host's defense mechanisms. Furthermore, because many pathogens take advantage of similar pathways, there is a potential for developing therapies that target a broad-spectrum of pathogens. We were one of the first groups to use a host-targeted therapeutic (HTT) for the treatment of a pathogen that is considered a Threat Level of Serious by the CDC. This HTT does not work directly on intracellular pathogens but instead targets host cell promoting pathways that result in clearance of the pathogen. Additionally, this HTT has broad-spectrum activity against pathogens including a NIAID Category A class pathogen. We have both in vitro and in vivo data showing activity and increase in survival. In order to increase activity we have encapsulated this compound in a novel biomaterial that is acid sensitive. This acid sensitivity allows for the intracellular release of encapsulated cargo. Our preliminary data shows that encapsulation of the HTT drastically enhances the efficacy of the compound compared to non-encapsulated form. In this proposal, we propose on performing medicinal chemistry on our HTT to develop a compound with increased activity. We will formulate this compound in our novel polymeric particles for both in vitro and in vivo testing. We will perform various biological assays to determine activity of optimized compounds. In order to do this, our proposal is a partnership between the University of North Carolina, National Taiwan University, and the Research Triangle Institute (RTI). This partnership will be invaluable in obtaining an optimized HTT compound that has activity against a broad spectrum of pathogens as it incorporates academic researchers in the field and RTI's experience with drug development.

Public Health Relevance Statement

Project Narrative Here we propose the optimization of a host targeted therapeutic for the treatment of infection due to drug resistant bacteria. We will alter the chemical structure and formulate the drug to increase the efficacy of the compound. We will perform experiments that will help enable IND FDA filing of the proposed therapy.

NIH Spending Category

Antimicrobial Resistance	Biodefense	Bioengineering	Digestive Diseases	
Emerging Infectious Diseases	Foodborne Illness	Infectious Diseases	Nanotechnology	Orphan Drug
Prevention	Rare Diseases	Vector-Borne Diseases		

Project Terms

ADME Study	AKT Signaling Pathway	Acetates	Acids	Anti-Bacterial Agents		
Antibiotic Resistance	Antibiotics	Autophagocytosis	Bacteria	Bacterial Drug Resistance		
Bacterial Infections	Biocompatible Materials	Biological	Biological Assay	Biomedical Engineering		
Camptothecin	Categories	Cells	Centers for Disease Control and Prevention (U.S.)	Cessation of life		
Chemical Structure	Chemistry	Clinical assessments	Computer software	Data	Development	
Dextran	Drug Design	Drug resistance	Encapsulated	Excipients	Excretory function	
Formulation	Francisella	Francisella tularensis	Genes	Goals	Grant	Growth
Health Care Costs	Host Defense Mechanism	Human	In Vitro	Infection	Infection prevention	

[Read More](#)

Details

Thank you for your feedback!

[Back to Search Results](#)

Host Targeted Therapy for Drug Resistant *Salmonella* and *Francisella* infection

- [!\[\]\(cf5be311f7b2821912d8009884508fa2_img.jpg\) **Description**](#)
- [!\[\]\(9804e70d96ff9fe9899b264c06a33cd7_img.jpg\) **Details**](#)
- [!\[\]\(4f49380f3d6bce047bc47b2072cc076f_img.jpg\) **Sub-Projects**](#)
- [!\[\]\(73944fd4f6fb83e4c64013731d1820cc_img.jpg\) **Publications**](#)
- [!\[\]\(d8f7165d5a8d1eba426ea452457190e5_img.jpg\) **Patents**](#)
- [!\[\]\(f608c4821f4fa8f3141b1baf96fa88f9_img.jpg\) **Outcomes**](#)
- [!\[\]\(ecaac2a7ce9fc9f5de2e0b330d2ae13c_img.jpg\) **Clinical Studies**](#)
- [!\[\]\(f9b536c6b3afa5ea31dceef88a94e509_img.jpg\) **News and More**](#)
- [!\[\]\(d6dd49217bf3ceede8ee3a91c4ef7927_img.jpg\) **History**](#)
- [!\[\]\(fca66e4dcc57d71aae53b43a17649d9d_img.jpg\) **Similar Projects**](#)

Project Number 5R01AI125147-05 **Contact PI/Project Leader** AINSLIE, KRISTY M
Other PIs

Awardee Organization
UNIV OF NORTH CAROLINA
CHAPEL HILL

ainslie.1@osu.edu

Organization

Name UNIV OF NORTH CAROLINA CHAPEL HILL
City CHAPEL HILL
Country UNITED STATES (US)

Department Type PHARMACOLOGY
Organization Type SCHOOLS OF PHARMACY

State Code NC
Congressional District 04

Other Information

FOA RFA-AI-15-024	Administering Institutes or Centers NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	Project Start Date	22-April-2016
Study Section ZAI1-SM-M(M1)	DUNS Number 608195277 CFDA Code 855	Project End Date	31-March-2022
Fiscal Year 2020	Award Notice Date 19-March-2020	Budget Start Date	01-April-2020
		Budget End Date	31-March-2022

Project Funding Information for 2020

Total Funding \$1,043,412	Direct Costs \$901,295	Indirect Costs \$142,117
--	---	---

Year	Funding IC	FY Total Cost by IC
2020	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$1,043,412

NIH Categorical Spending

[Click here for more information on NIH Categorical Spending](#)

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$1,043,412	Antimicrobial Resistance; Biodefense; Bioengineering; Digestive Diseases; Emerging Infectious Diseases; Foodborne Illness; Infectious Diseases; Nanotechnology; Orphan Drug; Prevention; Rare Diseases; Vector-Borne Diseases;

Sub Projects

No Sub Projects information available for 5R01AI125147-05

Publications

No Publications available for 5R01AI125147-05

Patents

No Patents information available for 5R01AI125147-05

Outcomes

Thank you for your feedback!

[Back to Search Results](#)

Host Targeted Therapy for Drug Resistant *Salmonella* and *Francisella* infection

[!\[\]\(cbe80b694ebd74fcfe136a095b608235_img.jpg\) Description](#)

Project Number

5R01AI125147-05

Contact PI/Project Leader

AINSLIE, KRISTY M

Awardee Organization

UNIV OF NORTH CAROLINA

CHAPEL HILL

[!\[\]\(0d5ec72f61334709c3fc9450209b754f_img.jpg\) Details](#)[!\[\]\(b792654f2cef9719eabeb6c5be00811e_img.jpg\) Sub-Projects](#)[!\[\]\(7d1d6890825e83a6a4a51febe2dcc7f3_img.jpg\) Publications](#)[!\[\]\(2bae76de5ebbd5c4d7d47162f1673734_img.jpg\) Patents](#)[!\[\]\(b64b40baaee5acddc1eab8538ba84754_img.jpg\) Outcomes](#)[!\[\]\(84f47badaad7772cd95667a7c387a639_img.jpg\) Clinical Studies](#)

Clinical Studies

No Clinical Studies information available for 5R01AI125147-05

[!\[\]\(aff7c69c44a5e015f18c35867ef3f5c3_img.jpg\) News and More](#)

News and More

Related News Releases

No news release information available for 5R01AI125147-05

[!\[\]\(a25a22d88c5882f4a20f36103df86562_img.jpg\) History](#)

History

No Historical information available for 5R01AI125147-05

[!\[\]\(0aaea5eb29549a0c507a518cbdd818a0_img.jpg\) Similar Projects](#)

Similar Projects

No Similar Projects information available for 5R01AI125147-05

Thank you for your feedback!