

[Back to Search Results](#)

Novel VP30-host Interactions that Negatively Regulate Ebola Virus Infection

[Description](#)[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)[Share](#)

Description

Abstract Text

ABSTRACT The filoviruses, Ebola and Marburg viruses (EBOV and MARV), are emerging, negative-strand RNA viruses associated with outbreaks of severe viral hemorrhagic fever. The virulence and emerging nature of these zoonotic pathogens makes them a significant threat to human health, potential agents of bioterrorism, and NIAID category A priority pathogens. Currently, no approved anti-filovirus therapeutics are available. Importantly, there is a major gap in our understanding with regard to the role of host factors at critical stages in the viral replication cycle. The overall goal of this revised R01 application is to characterize EBOV VP30 (eVP30), a key viral protein that facilitates viral transcription, and its interactions with host factors. Our plan builds on recent successes in structurally and functionally characterizing how eVP30 interacts with the viral nucleoprotein (NP) to modulate EBOV RNA synthesis and on a joint (Amarasinghe, Basler, and Krogan groups) unbiased proteomics screen using EBOV proteins as bait that uncovered 193 high-confidence EBOV- human protein-protein interactions (PPIs), including one between eVP30 and the host ubiquitin ligase RBBP6. A crystal structure of this complex revealed that RBBP6 and the viral NP compete for the same VP30 binding surface. Comparison of NP and RBBP6 peptides that bind eVP30 revealed a common PPxPxY motif that is necessary for the interaction. Whereas knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV infectivity, overexpression of RBBP6 or its peptide severely inhibited EBOV transcription and infection. Interestingly, at least two additional eVP30 interactors from our dataset (hnRNP L and hnRNP UL1) also possess PPxPxY motifs. Based on these findings, we propose a multidisciplinary approach to (1) Determine the structure of eVP30 N-terminus and define its association with RNA and protein ligands in the absence and presence of NP; (2) Determine the mechanisms by which eVP30-interacting proteins RBBP6, hnRNP L, and hnRNP UL1 modulate eVP30 function and RNA synthesis; and (3) Test the hypothesis that eVP30 modulates the function of host factors RBBP6, hnRNP L, and hnRNP UL1. These studies will characterize unique host interactions that negatively regulate EBOV replication with the goals of defining how EBOV manipulates host pathways and identifying novel therapeutic targets.

Public Health Relevance Statement

PROJECT NARRATIVE Pathogenic Ebola and Marburg viruses cause rare but deadly outbreaks among human populations. The recent outbreak in West-Africa coupled with a rising potential for misuse in the form of bioterrorism, underscore the importance of our proposed studies on these viruses to global health. The current studies are important as they will identify novel host targets that are important for viral replication and define broad spectrum targets to develop therapy.

NIH Spending Category

Biodefense Emerging Infectious Diseases Genetics Infectious Diseases Rare Diseases

Project Terms

Address Affinity Africa Binding Biochemical Biochemistry Biological Assay
 Bioterrorism Category A pathogen Cell physiology Cells Collaborations Complex Coupled
 Crystallization Data Data Set Democratic Republic of the Congo Disease Outbreaks Ebola virus
 Equilibrium Family member Filovirus Frankfurt-Marburg Syndrome Virus Gene Expression
 Genes Genetic Transcription Genome Goals Growth Health
 Heterogeneous-Nuclear Ribonucleoprotein L Heterogeneous-Nuclear Ribonucleoproteins Human
 Infection Integration Host Factors Joints Ligands Mediating Messenger RNA Mutate
 National Institute of Allergy and Infectious Disease Nature Nucleoproteins Pathogenicity

[Read More](#)

Details

Contact PI/ Project Leader

Name

[AMARASINGHE, GAYA K.](#)

Title

PROFESSOR

Other PIs

Name

[BASLER, CHRISTOPHER F.](#)

Title

[KROGAN, NEVAN J.](#)

Program Official

Name

[DUPUY, LESLEY CONRAD](#)

Contact

Thank you for your feedback!

[Back to Search Results](#)

Novel VP30-host Interactions that Negatively Regulate Ebola Virus Infection

[Description](#)

Project Number

1R01AI143292-01A1

Contact PI/Project Leader

AMARASINGHE, GAYA K.[Other PIs](#)

Awardee Organization

WASHINGTON UNIVERSITY

[Details](#)

[Sub-Projects](#)

[Publications](#)

[Patents](#)

[Outcomes](#)

[Clinical Studies](#)

[News and More](#)

[History](#)

[Similar Projects](#)

WASHINGTON UNIVERSITY

PATHOLOGY

MO

City
SAINT LOUISOrganization Type
SCHOOLS OF MEDICINECongressional District
01Country
UNITED STATES (US)

Other Information

FOA

PA-18-484Administering Institutes or Centers
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASESProject Start Date
01-March-2019

Study Section

Special Emphasis Panel[ZRG1 IDM-Y (02)]DUNS Number
068552207 CFDA Code
855Project End Date
29-February-2024Fiscal Year
2019Award Notice Date
28-February-2019Budget Start Date
01-March-2019Budget End Date
29-February-2020

Project Funding Information for 2019

Total Funding
\$832,743Direct Costs
\$711,741Indirect Costs
\$121,002

Year	Funding IC	FY Total Cost by IC
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$832,743

NIH Categorical Spending

[Click here for more information on NIH Categorical Spending](#)

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$832,743	Biodefense; Emerging Infectious Diseases; Genetics; Infectious Diseases; Rare Diseases;

[Sub Projects](#)

No Sub Projects information available for 1R01AI143292-01A1

[Publications](#)

No Publications available for 1R01AI143292-01A1

[Patents](#)

No Patents information available for 1R01AI143292-01A1

[Outcomes](#)

The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.

No Outcomes available for 1R01AI143292-01A1

Thank you for your feedback!

[Back to Search Results](#)

Novel VP30-host Interactions that Negatively Regulate Ebola Virus Infection

- [Description](#)
- [Details](#)
- [Sub-Projects](#)
- [Publications](#)
- [Patents](#)
- [Outcomes](#)
- [Clinical Studies](#)
- [News and More](#)
- [History](#)
- [Similar Projects](#)

Project Number
1R01AI143292-01A1

Contact PI/Project Leader
AMARASINGHE, GAYA K. [Other PIs](#)

Awardee Organization
WASHINGTON UNIVERSITY

News and More

Related News Releases

No news release information available for 1R01AI143292-01A1

History

No Historical information available for 1R01AI143292-01A1

Similar Projects

No Similar Projects information available for 1R01AI143292-01A1

Thank you for your feedback!