

[Back to Search Results](#)

Immunity to novel T/F SHIVs: variability in the co-evolution of virus and host immunity

[Description](#)[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)[Share](#)

Description

Abstract Text

Statement of Work The HIV-1 **pandemic** is a global threat and effective vaccination is the most likely pathway to its control. While vaccines that induce broadly neutralizing antibodies (bNAbs) against HIV could be transformative for intervening in the HIV **pandemic**, no vaccine has been shown to induce HIV-1 bNAbs. Indeed, we do not even understand how bNAb responses arise in rare, HIV-1 infected patients. In part our failure to understand HIV-1 immunity and the generation of bNAb responses can be traced to the absence of a suitable experimental model to study virus:host interaction. Most simian-human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains do not infect rhesus macaques (RMs). This failure reflects low affinity for rhesus CD4 (rhCD4) resulting in impaired virus entry into rhCD4+ cells. We have solved the issue of Env-rhCD4 binding and demonstrated productive infection in RMs by SHIVs with T/F Env glycoproteins, including those that elicit broadly neutralizing antibodies (bNAbs) in humans. The goal of this study is to study infection and immunity in rhesus macaques infected with molecular clones of T/F SHIVs to determine whether patterns of co-evolution by virus and host immunity in individual macaques are similar or unique. This issue is crucial in predicting the efficacy of "lineage design" vaccines.

Public Health Relevance Statement

Relevance HIV-1 infection and AIDS is a global threat not only to the health of individuals but to societies and nations. It is clear that vaccines capable of eliciting broadly neutralizing HIV-1 antibody (bNAb) could be highly effective in stemming the HIV pandemic, at present no vaccine has been shown to induce HIV-1 bNAbs. A widely used approach to induce bNAb production by vaccination is the development of "designer" immunogens that recreate known pathways of bNAb evolution. This approach, however is always based on the bNAb response of rare individuals. The experiments proposed in this application will determine whether immune response to identical T/F viruses are similar between individual RMs or highly distinct. This is a crucial point for "lineage design" vaccines: if immune responses are highly variable to identical infections, then the recapitulation of any single bNAb lineage in diverse individuals is unlikely.

NIH Spending Category

Biotechnology	HIV/AIDS	Immunization	Infectious Diseases	Prevention	Vaccine Related
Vaccine Related (AIDS)					

Project Terms

Acquired Immunodeficiency Syndrome	Affinity	Age	Anecdotes	Antibodies	Antibody Formation			
Antibody Response	Antigens	Autologous	B-Lymphocytes	Binding	Cell Lineage	Cells		
Clone Cells	Cloning	Data Correlations	Development	Dose	Evolution	Experimental Models		
Failure	Generations	Genetic study	Glycoproteins	Goals	HIV	HIV-1	Health	Human
Humoral Immunities	Immune	Immune response	Immunity	Impairment	Individual	Infection		
Knowledge	Laboratories	Macaca	Macaca mulatta	Maps	Memory	Methods	Molecular	
Molecular Cloning	Natural History	Nature	Pathway interactions	Patients	Pattern	Plasma		
Population	Problem Solving	Production	Reproducibility	Route	Serologic tests	Societies		

[Read More](#)

Details

Contact PI/ Project Leader

Name
[KELSOE, GARNETT H](#)Title
JAMES B. DUKE PROFESSORContact
ghkelsoe@duke.edu

Other PIs

Not Applicable

Program Official

Name
MALASPINA, ANGELAContact
amalaspina@niaid.nih.gov

Thank you for your feedback!

[Back to Search Results](#)

Immunity to novel T/F SHIVs: variability in the co-evolution of virus and host immunity

[!\[\]\(0f848bbd71cef6b345273b16f905912a_img.jpg\) Description](#)[!\[\]\(339a16584d5da0f0a3ca4e9ec17bf6a1_img.jpg\) Details](#)[!\[\]\(a870788d6ed9b8fd294b7654a8c8526b_img.jpg\) Sub-Projects](#)[!\[\]\(de95854c7ee024cfadc48187bbb781b2_img.jpg\) Publications](#)[!\[\]\(3211b5d1d968fc1665909b34f9f16010_img.jpg\) Patents](#)[!\[\]\(6059a5aa8b4ca7bb793408023d6c6e42_img.jpg\) Outcomes](#)[!\[\]\(c50c8b7b2cc2cf9ff925edec0ee94c0d_img.jpg\) Clinical Studies](#)[!\[\]\(6a9b39b98eb945faa14c645ec99e4eaa_img.jpg\) News and More](#)[!\[\]\(9c2e8d1b5bd77cb5c9f83b7a9cff79fd_img.jpg\) History](#)[!\[\]\(e3275251d0893157c3584e20c81dc3ba_img.jpg\) Similar Projects](#)

Project Number

5R01AI128832-03

Contact PI/Project Leader

KELSOE, GARNETT H

Awardee Organization

DUKE UNIVERSITY

Country
UNITED STATES (US)

Other Information

FOA

RFA-AI-15-055

Study Section

Special Emphasis Panel[ZRG1-
AARR-P(51)R]Fiscal Year
2019Award Notice Date
11-July-2019

Administering Institutes or Centers

NATIONAL INSTITUTE OF ALLERGY
AND INFECTIOUS DISEASES

Project Start

01-July-2017

Date

Project End Date

30-June-2022

Budget Start

01-July-2019

Date

Budget End Date

30-June-2020

Project Funding Information for 2019

Total Funding
\$1,303,208Direct Costs
\$969,910Indirect Costs
\$333,298

Year	Funding IC	FY Total Cost by IC
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$1,303,208

NIH Categorical Spending

[Click here for more information on NIH Categorical Spending](#)

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$1,303,208	Biotechnology; HIV/AIDS; Immunization; Infectious Diseases; Prevention; Vaccine Related; Vaccine Related (AIDS);

Sub Projects

No Sub Projects information available for 5R01AI128832-03

Publications

No Publications available for 5R01AI128832-03

Patents

No Patents information available for 5R01AI128832-03

Outcomes

The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.

No Outcomes available for 5R01AI128832-03

Clinical Studies

No Clinical Studies information available for 5R01AI128832-03

Thank you for your feedback!

[Back to Search Results](#)

Immunity to novel T/F SHIVs: variability in the co-evolution of virus and host immunity

[!\[\]\(cbe80b694ebd74fcfe136a095b608235_img.jpg\) Description](#)

Project Number

5R01AI128832-03

Contact PI/Project Leader

KELSOE, GARNETT H

Awardee Organization

DUKE UNIVERSITY

[!\[\]\(4fe57c3593bf1b21d272ae7ac8dfaf77_img.jpg\) Details](#)[!\[\]\(0d5ec72f61334709c3fc9450209b754f_img.jpg\) Sub-Projects](#)[!\[\]\(b792654f2cef9719eabeb6c5be00811e_img.jpg\) Publications](#)

No news release information available for 5R01AI128832-03

[!\[\]\(2bae76de5ebbd5c4d7d47162f1673734_img.jpg\) Patents](#)[!\[\]\(b64b40baaee5acddc1eab8538ba84754_img.jpg\) Outcomes](#)[!\[\]\(84f47badaad7772cd95667a7c387a639_img.jpg\) History](#)

No Historical information available for 5R01AI128832-03

[!\[\]\(5d954b3e270654ad8ab0d5913161c03c_img.jpg\) Clinical Studies](#)[!\[\]\(aff7c69c44a5e015f18c35867ef3f5c3_img.jpg\) News and More](#)[!\[\]\(c15650232aa6660c9deb34f3b82dcb72_img.jpg\) History](#)[!\[\]\(1ed10657a19f9137278430c48fd18626_img.jpg\) Similar Projects](#)[!\[\]\(4c9516d2c24d0d513bc9f84c2e013d65_img.jpg\) Similar Projects](#)

No Similar Projects information available for 5R01AI128832-03

Thank you for your feedback!