

[Back to Search Results](#)[Description](#)[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)[Share](#)

Discovery of broad-spectrum influenza antivirals with a high genetic barrier to drug resistance by targeting the viral polymerase

Project Number
1R21AI144887-01

Contact PI/Project Leader
WANG, JUN

Awardee Organization
UNIVERSITY OF ARIZONA

Description

Abstract Text

Project Summary Despite the existence of vaccines and antiviral drugs, global annual death tolls attributed to influenza virus infection are ~500,000. Currently there is only one orally bioavailable drug, oseltamivir, that is still in use to treat influenza infection. The alarming fact is that oseltamivir-resistant influenza strains have already been isolated from human patients, and several of them appear to have adapted the fitness of transmission. Thus there is a pressing need to develop novel antivirals to combat these drug-resistant influenza viruses. They can be used either alone to inhibit oseltamivir-resistant strains or in combination with oseltamivir to decrease the pace of drug resistance evolution. Moreover, as the influenza viruses circulating among humans consist of at least two influenza A strains (H1N1 and H3N2) and two B strains (Yamagata and Victoria), it is also desirable to have one antiviral drug with broad-spectrum antiviral activity against all four strains. In response to the need for a next generation of antiviral drugs with broad-spectrum antiviral activity, especially against multidrug-resistant influenza viruses, we performed an in silico screening of an in-house library of small molecules predominantly prepared by one-pot multicomponent reaction (MCR) methodologies against the virus polymerase PA subunit and have identified several promising hits. One compound, UAWJ85, inhibits several multidrug-resistant influenza A and B viruses with EC₅₀ values range from single to sub-micromolar. This compound also displays a high in vitro genetic barrier to drug resistance, as no resistant viruses were selected after 10 passages with increasing concentrations of the compound. Mechanistic studies confirmed the inhibition of polymerase PA-PB1 subunit interactions by UAWJ85. The broad-spectrum antiviral activity and high in vitro genetic barrier to drug resistance of UAWJ85, coupled with the expeditious structure-activity relationship studies using the one-pot Ugi- Azide 4CR methodology, have led us to further optimize the antiviral potency, selectivity index, in vitro and in vivo PK properties of lead compounds and test their in vivo antiviral efficacy in mice. In Aim 1, we will optimize the in vitro antiviral and pharmacokinetic properties of UAWJ85. A list of criteria was imposed for compound progression. The goal is to prioritize lead compounds for in vivo mice studies. In Aim 2, we will test the in vivo PK and antiviral activity of UAWJ85 or its analogs using the influenza virus infected mice model. In summary, the advantage of exploring MCR products for broad-spectrum anti-influenza drugs has been clearly demonstrated by the preliminary results. This proposal, if successfully implemented, will lead to the urgently needed antivirals to combat both seasonal outbreaks and the next influenza **pandemic**.

Public Health Relevance Statement

PROJECT NARRATIVE The limited efficacy of currently approved antiviral drugs in combating emerging drug-resistant influenza viruses highlights the immediate need for novel anti-influenza drugs. This application undertakes an innovative approach by exploring expeditious multicomponent reaction products for broad-spectrum anti-influenza drugs. We have identified several promising drug candidates that are active against multiple human clinical isolates of influenza A and B viruses, including strains that are resistant to oseltamivir. This project, if successfully implemented, is likely to yield the first-in-class "Virological Penicillin."

NIH Spending Category

Antimicrobial Resistance Biodefense Emerging Infectious Diseases Infectious Diseases Influenza
Pneumonia & Influenza

Project Terms

A549 Amantadine resistance Antiviral Agents Azides Binding Bioavailable
Biological Assay Biological Availability Body Weight California Cell Line
Cell Membrane Permeability Cessation of life Clinical Coca Complex Computer Simulation
Coupled Development Disease Outbreaks Dose Drug Kinetics Drug resistance Ensure
Enzyme-Linked Immunosorbent Assay Evolution Exhibits Genetic Goals Human In Vitro
Inbred BALB C Mice Infection Influenza Influenza A Virus, H1N1 Subtype Influenza A virus
Influenza B Virus Lead Maximum Tolerated Dose Methodology Methods Monitor
Multi-Drug Resistance Mus Mutation North America Oral Oseltamivir Outcome

[Read More](#)

Thank you for your feedback!

[Back to Search Results](#)[!\[\]\(87eaa371aa6012ba00cb26e93903d0a5_img.jpg\) Description](#)[!\[\]\(fa0af60b6801543fcbf5ea18bb648edb_img.jpg\) Details](#)[!\[\]\(ae7c1f8b6bba2d14eb5ab74ad75e9714_img.jpg\) Sub-Projects](#)[!\[\]\(4d2ef660b5f8c43a89686eee800bc7ac_img.jpg\) Publications](#)[!\[\]\(645d49f191f071ee4108de96860343e6_img.jpg\) Patents](#)[!\[\]\(8a7115b6ad76657d335c4fdc0aa0c32d_img.jpg\) Outcomes](#)[!\[\]\(0736078b486d26d306221bc956d8cdf4_img.jpg\) Clinical Studies](#)[!\[\]\(9e0e766f70f739d8fa87fbef24ec1034_img.jpg\) News and More](#)[!\[\]\(d1e58ce8b876de7d6550061fb09de2a5_img.jpg\) History](#)[!\[\]\(db2e8a085c1cd7c8aa935c4abda15cf6_img.jpg\) Similar Projects](#)

Discovery of broad-spectrum influenza antivirals with a high genetic barrier to drug resistance by targeting the viral polymerase

Project Number

1R21AI144887-01

Contact PI/Project Leader

WANG, JUN

Awardee Organization

UNIVERSITY OF ARIZONA

Title

ASSOCIATE PROFESSOR

Contact

kraffta@niaid.nih.gov

Contact

junwang@pharmacy.arizona.edu**Organization**

Name

UNIVERSITY OF ARIZONA

Department Type

PHARMACOLOGY

State Code

AZ

City

TUCSON

Organization Type

SCHOOLS OF PHARMACY

Congressional District

03

Country

UNITED STATES (US)**Other Information**

FOA

PA-18-489

Study Section

Special Emphasis Panel[ZRG1 IDM-Y (82)]Administering Institutes or Centers
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASESProject Start Date
01-March-2019

Fiscal Year

2019

Award Notice Date

27-February-2019DUNS Number
806345617CFDA Code
855Project End Date
28-February-2021Budget Start Date
01-March-2019Budget End Date
29-February-2020**Project Funding Information for 2019**

Total Funding

\$220,848

Direct Costs

\$150,000

Indirect Costs

\$70,848

Year	Funding IC	FY Total Cost by IC
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$220,848

NIH Categorical Spending[Click here for more information on NIH Categorical Spending](#)

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$220,848	Antimicrobial Resistance; Biodefense; Emerging Infectious Diseases; Infectious Diseases; Influenza; Pneumonia & Influenza;

[!\[\]\(3e9ac1942c5596ed3ad53e2d60d4fbbf_img.jpg\) Sub Projects](#)

No Sub Projects information available for 1R21AI144887-01

[!\[\]\(1ca2f62f96cbcb687988460c56eb3573_img.jpg\) Publications](#)

No Publications available for 1R21AI144887-01

[!\[\]\(1171995ba2591b738958b25c922d6398_img.jpg\) Patents](#)

No Patents information available for 1R21AI144887-01

[!\[\]\(447060fc1efb1cdf5dd89ddb2be74a42_img.jpg\) Outcomes](#)

Thank you for your feedback!

[Back to Search Results](#)[!\[\]\(4729e517bc6a7cd81c8025b9646574fb_img.jpg\) Description](#)[!\[\]\(cbe80b694ebd74fcfe136a095b608235_img.jpg\) Details](#)[!\[\]\(a03a7eb2f4046e1d3c76772003e549ea_img.jpg\) Sub-Projects](#)[!\[\]\(cbe2492b119e39e02a1dab2af4a4b296_img.jpg\) Publications](#)[!\[\]\(e474458956c9a37fbf9586ddb60a7fa1_img.jpg\) Patents](#)[!\[\]\(3e2231b1ad3ca8da8658228c00dd08e0_img.jpg\) Outcomes](#)[!\[\]\(5361750c22c4e047a52f4eac1ec2d4cc_img.jpg\) Clinical Studies](#)[!\[\]\(870f5d5e9c0d57485634be3ecf52f3ca_img.jpg\) News and More](#)[!\[\]\(4fe57c3593bf1b21d272ae7ac8dfaf77_img.jpg\) History](#)[!\[\]\(0d5ec72f61334709c3fc9450209b754f_img.jpg\) Similar Projects](#)

Discovery of broad-spectrum influenza antivirals with a high genetic barrier to drug resistance by targeting the viral polymerase

Project Number

1R21AI144887-01

Contact PI/Project Leader

WANG, JUN

Awardee Organization

UNIVERSITY OF ARIZONA

Clinical Studies

No Clinical Studies information available for 1R21AI144887-01

News and More

Related News Releases

No news release information available for 1R21AI144887-01

History

No Historical information available for 1R21AI144887-01

Similar Projects

No Similar Projects information available for 1R21AI144887-01

Thank you for your feedback!