

[Back to Search Results](#)

Impact of selective genome packaging on influenza A virus reassortment

[Description](#)Project Number
5R01AI125268-04Contact PI/Project Leader
LOWEN, ANICE CAwardee Organization
EMORY UNIVERSITY[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)[Share](#)

Description

Abstract Text

Summary Influenza A viruses (IAV) are constantly changing. This change occurs rapidly, on a similar time scale to influenza epidemics. For this reason, the epidemiology and evolution of IAV are closely linked, and an in depth understanding of viral evolution is critical for public health efforts aimed at controlling influenza. We are working to understand the mechanisms of IAV genomic diversification, which underlie its evolution. The current proposal focuses on reassortment, the process by which influenza and other viruses with segmented genomes exchange gene segments. The potential for reassortment to purge the viral genome of deleterious mutations and bring together multiple beneficial changes makes it a powerful catalyst of viral evolution. Reassortant viruses that derive gene segments from human and avian or swine-adapted IAV can furthermore overcome host restrictions to cause zoonoses or pandemics. Indeed, reassortment enabled all four IAV pandemics of the last century. However, reassortment between heterologous IAVs is subject to strong constraints, due to the potential for incompatibility among divergent viral proteins or RNAs. Herein, we propose to measure the impact on reassortment efficiency of sequence divergence within viral RNA packaging signals. In this way, we will test the hypothesis that selective genome packaging limits reassortment. We expect that the severity of the restriction on reassortment will correlate inversely with sequence identity within packaging signal regions and that, for this reason, certain segment combinations will be more likely to arise than others. We furthermore predict that the genotypes that emerge from heterologous reassortment will reflect the physical interactions among viral RNA segments during virion assembly. We will therefore use our data to construct testable models of how the eight segments are organized within the virion. This approach brings a novel methodology to the perennially difficult problem of how the genome is packaged into viral particles. Finally, to gauge the importance of packaging signal mismatch relative to protein mismatch, we will evaluate the impact of sequence divergence within viral protein coding sequences on reassortment outcomes. Ultimately, we aim to define the conditions in nature that are permissive for reassortment and the factors that determine the efficiency of reassortment. This knowledge will significantly advance our understanding of IAV evolution and the mechanisms that shape the emergence of zoonotic and **pandemic** IAVs.

Public Health Relevance Statement

Project Narrative Through regular epidemics and infrequent pandemics, influenza virus causes mild to severe disease in a significant proportion of the population every year. Reassortment, the process by which two differing influenza viruses exchange genes, is one mechanism by which novel strains capable of causing these outbreaks arise. By defining the circumstances under which reassortment can proceed, our research enables public health efforts aimed at predicting and limiting the emergence of new influenza virus strains.

NIH Spending Category

Biodefense Emerging Infectious Diseases Genetics Infectious Diseases Influenza
Pneumonia & Influenza

Project Terms

Birds	Cells	Code	Complex	Data	Defect	Detection	Disease	Disease Outbreaks
Dose	Epidemic	Epidemiology		Evaluation	Evolution	Family suidae	Gene Exchanges	
Genes	Genetic	Genome	Genomics	Genotype	Goals	Human	Infection	Influenza
Influenza A Virus, H1N1 Subtype				Influenza A Virus, H5N1 Subtype		Influenza A Virus, H7N9 Subtype		
Influenza A virus		Knowledge	Link	Measures	Methodology	Modeling	Mutation	Nature
Netherlands		North America	Open Reading Frames		Outcome	Panama	Pathogenicity	
Pathway Analysis		Population	Process	Proteins	Public Health	RNA	Reassortant Viruses	
Research		Role	Severities	Shapes	Signal Transduction	Signaling Protein	Silent Mutation	

[Read More](#)

Details

[Contact PI/ Project Leader](#)[Other PIs](#)

Thank you for your feedback!

[Back to Search Results](#)

Impact of selective genome packaging on influenza A virus reassortment

[Description](#)[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)

Project Number

5R01AI125268-04

Contact PI/Project Leader

LOWEN, ANICE C

Awardee Organization

EMORY UNIVERSITY

Organization

Name

EMORY UNIVERSITY

Department Type

MICROBIOLOGY/IMMUN/VIROLOGY

State Code

GA

City

ATLANTA

Organization Type

SCHOOLS OF MEDICINE

Congressional District

05

Country

UNITED STATES (US)

Other Information

FOA

PA-13-302

Study Section

Virology - B Study Section[VIRB]

Fiscal Year

2019

Award Notice Date

03-July-2019

Administering Institutes or Centers

NATIONAL INSTITUTE OF ALLERGY
AND INFECTIOUS DISEASES

Project Start Date

04-August-2016

DUNS Number

066469933

CFDA Code

855

Project End Date

31-July-2021

Budget Start Date

01-August-2019

Budget End Date

31-July-2021

Project Funding Information for 2019

Total Funding

\$386,618

Direct Costs

\$250,000

Indirect Costs

\$136,618

Year	Funding IC	FY Total Cost by IC
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$386,618

NIH Categorical Spending

[Click here for more information on NIH Categorical Spending](#)

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$386,618	Biodefense; Emerging Infectious Diseases; Genetics; Infectious Diseases; Influenza; Pneumonia & Influenza;

Sub Projects

No Sub Projects information available for 5R01AI125268-04

Publications

No Publications available for 5R01AI125268-04

Patents

No Patents information available for 5R01AI125268-04

Outcomes

The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.

No Outcomes available for 5R01AI125268-04

Thank you for your feedback!

[Back to Search Results](#)

Impact of selective genome packaging on influenza A virus reassortment

[Description](#)

Project Number

5R01AI125268-04

Contact PI/Project Leader

LOWEN, ANICE C

Awardee Organization

EMORY UNIVERSITY

[Details](#)[Sub-Projects](#)[Publications](#)[Patents](#)[Outcomes](#)[Clinical Studies](#)[News and More](#)[History](#)[Similar Projects](#)

News and More

Related News Releases

No news release information available for 5R01AI125268-04

History

No Historical information available for 5R01AI125268-04

Similar Projects

No Similar Projects information available for 5R01AI125268-04

Thank you for your feedback!